(Air) Pollution and Welfare

Matthew Gordon

Fall 2023

Paris School of Economics

(Air) Pollution and Welfare

Outline for Today

- Meta-Skills: Combining Theory and Empirics
- Air Pollution
 - Coase Theorem: Payments for Ecosystem Services
 - Estimating Damages
 - Hedonic Approach
 - Bottom up: Health Effects and Defensive Behaviors
 - Estimating Abatement Costs
 - Distributional Considerations Environmental Justice

Meta-Skills

What do I want you to get out of this class

- Approaches that can be applied to many questions.
 - How to model behavior
 - How to test a model
 - How to interpret a result

Combining Theory and Empirics

Taxonomy of Empirical Economics¹

All empirical work in economics is either structural or descriptive.

¹Borrowed shamelessly from Phil Haile's slides: https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf?dl=0

Taxonomy of Empirical Economics¹

All empirical work in economics is either structural or descriptive.

Descriptive work:

 Establishes facts about the data - e.g PM 2.5 levels are higher in India than the US, and have been declining over time

¹Borrowed shamelessly from Phil Haile's slides: https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf?dl=0

Taxonomy of Empirical Economics¹

All empirical work in economics is either structural or descriptive.

Descriptive work:

 Establishes facts about the data - e.g PM 2.5 levels are higher in India than the US, and have been declining over time

Structural work:

- Poses a model of the relationships between variables or the data-generating process
- Allows us to estimate 'counterfactuals' what would happen if...

¹Borrowed shamelessly from Phil Haile's slides: https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf?dl=0

What about Reduced Form?

A reduced form relationship is obtained by writing each endogenous variable as a function of *only* exogenous variables.

 e.g. solve for equilibrium quantities (price, quantities) in terms of exogenous parameters (technology, budget constraints, preferences)

We don't always need to explicitly solve the model. We just need to know what goes on which side of the equation and what restrictions our model implies.

What about Reduced Form?

A reduced form relationship is obtained by writing each endogenous variable as a function of *only* exogenous variables.

 e.g. solve for equilibrium quantities (price, quantities) in terms of exogenous parameters (technology, budget constraints, preferences)

We don't always need to explicitly solve the model. We just need to know what goes on which side of the equation and what restrictions our model implies.

But there is still a model! (Even if it's implicit)

Pop Quiz

Are these claims descriptive or structural?

• Shutting down the coal plant caused pollution to fall.

Pop Quiz

Are these claims descriptive or structural?

- Shutting down the coal plant caused pollution to fall.
- An RCT showed that an information campaign increased clean cookstove adoption.

Internal vs External Validity

Internal Validity - Are the conclusions valid within the context of the study?

- Are the instruments really exogenous?
- Was there non-random attrition or measurement error?

External Validity - Would these results hold in other contexts?

 What would happen if we ran the same RCT in a different time/place?

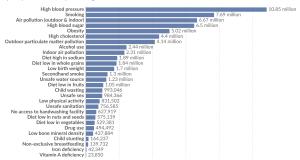
Why does this matter?

Making a 'policy recommendation' requires understanding a counterfactual

- This means we are in structural world.
- It also requires a normative framework in econ usually (but not always) maximizing welfare (in \$).

So as we read the papers, I want you to keep in mind:

- What is the model here (even if it's implicit)
- What are threats to internal validity
- What are threats to external validity
- What is the normative framework?


Air Pollution

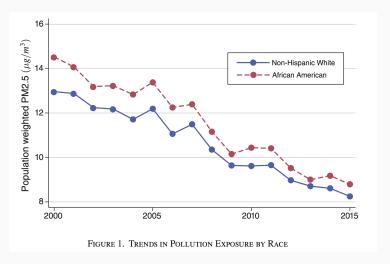
Air Pollution is a big problem

Deaths by risk factor, World, 2019

Our World in Data

The estimated annual number of deaths attributed to each risk factor¹. Estimates come with wide uncertainties, especially for countries with poor vital registration².

Data source: IHME. Global Burden of Disease (2019)


OurWorldInData.org/causes-of-death | CC BY

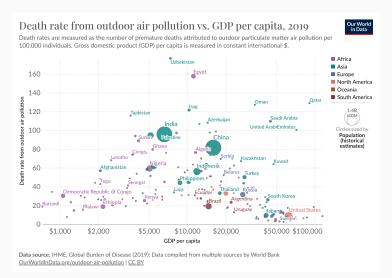
Note: Risk factors are not mutually exclusive: people may be exposed to multiple risk factors, and the number of deaths caused by each risk factor is calculated separately.

1. Risk factor A risk factor is a condition or behavior that increases the likelihood of developing a given disease or injury or an outcome such as death. The impact of a risk factor is estimated in different ways. For enemple, a common approach is to estimate the number of deaths that would cour if the risk factor was absent. Risk factors are not mutually exclusive; people can be exposed to multiple risk factor, which contribute to their disease or death. Because of this, the number of deaths that which risk factor is typically estimated separately. Read more about risk factors and their impact in our article. How do nesearchers estimate the death toll caused by each risk factor, which story its soulding observed an article.

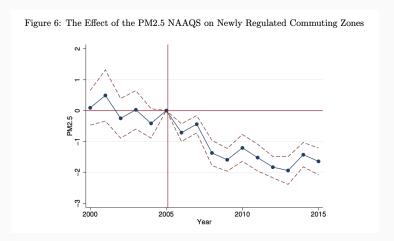
2. Civil and Vital Registration System: A Civil and Vital Registration System (CVRS) is an administrative system in a country that manages information on births, marriages, deaths and divorces, it generates and stores Vital records' and legal documents such as birth certificates and death certificates. In You can pead more about how deaths are predistered around the world?

But a solvable problem

New Delhi today

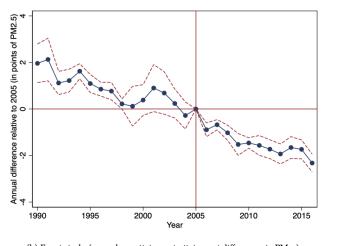


Pittsburgh in the 1940s


Descriptive or Structural?

U-shaped relationship with income

Descriptive or Structural?


Why did pollution decline in rich countries?

Currie, Voorheis and Walker (2023)

Descriptive or Structural?

Why did pollution decline in rich countries - revisited

(b) Event study (annual nonattainment-attainment differences in $PM_{2.5})\,$

Coase Theorem: The Promise of Decentralization

What should we do about it?

Should we do anything?

 Coase Theorem says that if property rights are well-defined, transaction costs low, then the efficient outcome can be achieved by decentralized bargaining.

Does the existence of air pollution show that the Coase Theorem fails?

Coase in Action: Payments for Ecosystem Services

Jack, Jayachandran, Kala, and Pande: Money (Not) to Burn: Payments for Ecosystem Services to Reduce Crop Residue Burning

- Farmers in Punjab burn crop stubble at end of planting season.
 - Why? Cheaper than renting machinery, labor
- Sends massive plume of smoke over densely populated areas.
- Why not pay them not to burn?

Money (Not) to Burn

Table 1: Contract Compliance and Not Burning

	with Contract Bur		CRM techniques	
		Not Burned (2)	Baler (3)	Seeder (4)
Standard PES	0.085 (0.015)***	0.020 (0.030)	-0.010 (0.037)	-0.020 (0.023)
Upfront PES	0.183 (0.020)***	0.077 (0.032)**	0.096 (0.039)**	0.013 (0.026)
p-val: Standard PES = Up- front PES	0.000	0.071	0.014	0.157
Control mean	0.000	0.091	0.199	0.102
Standard PES mean	0.084	0.098	0.171	0.087
Upfront PES mean	0.185	0.161	0.295	0.112
N	1668	1664	1387	1387

Money (Not) to Burn

	Amount Paid per Acre (1)	Not Burned (2)	Cost per Unburned Acre (3)
Standard PES	105.6 (21.7)***	0.020 (0.030)	5156.5 (7156.0)
Upfront PES	310.5 (15.4)***	0.077 (0.032)**	4051.3 (1595.0)**
p-val: Standard PES = Upfront PES	0.000	0.071	0.864
N	1667	1664	

Rough back of the envelope suggests \approx \$4,400 per life saved.

 86,000 premature deaths from crop burning, 53.5% from Kharif burning in Punjab, 4 million acres = .01 death/acre

Can we scale up Coase?

Challenges:

- Farmers liquidity constrained
- Coordination problem/transaction costs
- Verifications/additionality
 - Aspelund and Russo Additionality and Asymmetric Information in Environmental Markets: Evidence from Conservation Auctions

A Normative Framework:

Regulate Air Pollution such that:

$$\min_{A} \sum_{i} \omega_{i} (C_{i}(A) + D_{i}(A)) \tag{1}$$

Conjecture: Marginal damages are much greater than marginal abatement costs.

- How would we know?
- For a normal good, we could measure the benefits of a change in supply by looking at market prices - these measure consumers' marginal willingness to pay
- The fundamental problem of environmental economics: there is no market for clean air
- This puts us in the world of non-market valuation

Estimating Damages: Hedonics

The Hedonic Method: Housing Values

Measuring willingness to pay for clean air: individuals get utility from a house: $U(q_1, ..., q_n, A, u_i)$.

In equilibirium:

$$P_i = P(q_1, ..., q_n, A_i, u_i)$$
 (2)

(3)

Set up a regression:

$$\log P_{i} = \beta_{1} q_{1i} + ... + \beta_{n} q_{ni} + \beta_{A} A_{i} + u_{i}$$
 (4)

Then $\frac{d \log P_i}{dA} = \beta_A$ gives willingness to pay for changes in A.

The Hedonic Method: Housing Values

Measuring willingness to pay for clean air: individuals get utility from a house: $U(q_1, ..., q_n, A, u_i)$.

In equilibirium:

$$P_i = P(q_1, ..., q_n, A_i, u_i)$$
 (2)

(3)

Set up a regression:

$$\log P_{i} = \beta_{1} q_{1i} + ... + \beta_{n} q_{ni} + \beta_{A} A_{i} + u_{i}$$
 (4)

Then $\frac{d \log P_i}{dA} = \beta_A$ gives willingness to pay for changes in A.

• Question: Why logs?

The Hedonic Method: Reduced Form

Why doesn't this work?

- u_i could be correlated with A and P_i
- qs are endogenous, could have been chosen as a result of A.
- We need a reduced form!

Chay and Greenstone (JPE) 2003: Look at changes in home prices resulting from 'exogenous' changes in air pollution (the Clean Air Act).

Model restrictions: CAA changed A but not qs or us.

From Model to Estimation

$$\log P_{it} = \theta A_{it} + q_{it}\beta + \mu_i + u_{it} \tag{5}$$

$$A_{it} = q_{it}\Pi + \gamma_i + \nu_{it} \tag{6}$$

First differencing gets rid of time invariant unobservables:

$$\log P_{i1} - \log P_{i2} = \theta(A_{i1} - A_{i2}) + (q_{i1} - q_{i2})\beta + u_{i1} - u_{i2}$$
 (7)

$$A_{i1} - A_{i2} = (q_{i1} - q_{i2})\Pi + \nu_{i1} - \nu_{i2}$$
 (8)

Now identification assumption is $E(\nu_{i1} - \nu_{i2})(u_{i1} - u_{i2}) = 0$.

$$A_{i1} - A_{i2} = Z_{it}\Gamma + (q_{i1} - q_{i2})\Pi + \nu_{i1} - \nu_{i2}$$
 (9)

$$Z_{it} = \mathbf{1}_{\{A_{i1} > 75\}} + A_{i1} \tag{10}$$

Plug in $Z_{it}\widehat{\Gamma} + (q_{i1} - q_{i2})\widehat{\Pi}$ for $A_{i1} - A_{i2}$.

Now assumption is $E(Z_{it}(u_{i1} - u_{i2})) = 0$.

The Hedonic Method: Results

People are willing to pay for better AQ (about 2% per $1\mu g$).

Fig. 5.—1970–80 change in log housing values by 1975 nonattainment status and the geometric mean of TSPs in 1974.

Does this capture everything?

Why might some damages not capitalize into housing prices?

Does this capture everything?

Why might some damages not capitalize into housing prices?

How should we think about external validity?

- Free mobility between houses
 - See Christensen and Timmins (2022). Sorting or Steering: The Effects of Housing Discrimination on Neighborhood Choice
- Perfect information
- Well functioning capital markets

But maybe not a bad first approximation. Other uses of hedonics:

- Muehlenbachs, Spiller and Timmins (AER, 2015) Fracking
- Keiser and Shapiro (QJE 2018) Clean Water Act
- Taylor and Druckenmiller (AER 2022) Wetlands and Flooding

Estimating Damages: Bottom Up

Bottom up damage estimation

Health Costs

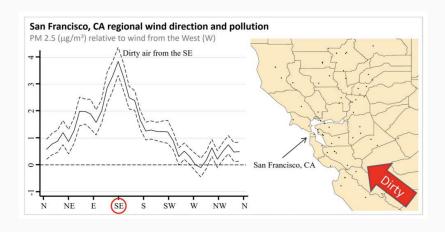
- Can we regress health status on ambient air pollution?
- What is our (implicit) structural model?
- How can derive a reduced form relationship?

Wind Direction as an IV

The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction

Tatyana Deryugina

Garth Heutel


Nolan H. Miller

David Molitor

Julian Reif

AMERICAN ECONOMIC REVIEW VOL. 109, NO. 12, DECEMBER 2019 (pp. 4178-4219)

Wind Direction as an IV

Regression Specification:

$$Y_{cdmy} = \beta PM2.5_{cdmy} + X_{cdmy}\gamma + \alpha_c + \alpha_s m + \alpha_{my} + e_{cdmy}$$
(11)

- Y_{cdmy} is outcome in county c on day d in month m and year
 y: three-day total death rate (d, d+1, d+2) per million,
 hospital admissions
- daily PM2.5 levels + 2 leads + 2 lags
- High dimensional controls: daily max temp into 17 bins, same for min temp, indicators for deciles of daily precipitation and wind speed, indicators for all possible interactions of these temp, precipitation, and wind speed variables (28,899)
- County c, state-by-month, and month-by-year FE
- Cluster se at the county level and weight

First stage:

$$PM2.5_{cdmy} = \sum_{g} \sum_{b=0}^{2} WindDir_{cdmy}^{90b} + X_{cdmy}\sigma + \alpha_{c} + \alpha_{s}m + \alpha_{my} + e_{cdmy}$$
(12)

- $WindDir_{cdmy}^{90b} = 1$ if daily average wind direction in county c falls in [90b, 90B + 90] and 0 otherwise
- 100 spatial group g for pollution monitors

Wind Direction as an IV: Results

Table 2: OLS and IV estimates of effect of PM 2.5 on elderly mortality, by age group (2) (3) (6) 65+ 65-69 70-74 75-79 80-84 85+ Panel A: OLS estimates PM 2.5 $(\mu q/m^3)$ 0.095*** 0.041*** 0.029 0.022 0.142*** 0.425*** (0.021)(0.014)(0.018)(0.022)(0.036)(0.072)Dep. var. mean 385 131 197 312 508 1.127 Effect relative to mean, percent 0.025 0.032 0.015 0.007 0.028 0.038 Observations 1.980.549 1.980.549 1.980.549 1.980.549 1.980.549 1.980.549 Adjusted R-squared 0.254 0.080 0.085 0.082 0.077 0.110 Panel B: IV estimates PM 2.5 $(\mu g/m^3)$ 0.685*** 0.267*** 0.329*** 0.348*** 0.877*** 2.419*** (0.061)(0.066)(0.068)(0.098)(0.159)(0.246)F-statistic 285 309 315 298 292 303 Dep. var. mean 385 131 197 312 508 1.127 0.178 0.204 0.173 0.215 Effect relative to mean, percent 0.167 0.111 Observations 1.980.549 1.980.549 1.980.549 1.980.549 1.980.549 1.980.549

Notes: Table reports OLS and IV estimates of equation (1) from the main text. Dependent variable is the three-day mortality rate per million beneficiaries in the relevant age group. All regressions include county, month-by-year, and state-by-month fixed effects; flexible controls for temperatures, precipitation, and wind speed; and two leads of these weather controls. OLS (IV) estimates also include two lags and two leads of PM 2.5 (instruments). Estimates are weighted by the number of beneficiaries in the relevant age group. Standard errors, clustered by county, are reported in parentheses. ***P\$ = 0.01, ***p\$ < 0.01, **p\$ < 0.0

How large are these effects?

Beyond Mortality: Defensive Expenditures

Health production function: pollutant concentrations and avoidance behaviors

$$h(c, a(c)) \tag{13}$$

Total derivative with respect to c:

$$\frac{dh}{dc} = \frac{dh}{dc} + \frac{dh}{da}\frac{da}{dc} \tag{14}$$

Deschenes et al (2017) find NOx program benefits from reduced medical expenditures are about 60% of mortality benefits.

 Is this a welfare loss or a transfer to pharmaceutical companies?

Abatement Costs

Implications for Welfare

So damages are large - what does this tell us about how air pollution should be regulated?

Remember:

$$\min_{A} \sum_{i} \omega_{i} (C_{i}(A) + D_{i}(A)) \tag{15}$$

Also want to minimize abatement costs

Greenstone, Pande, Sudarshan and Ryan - QJE forthcoming

Can Pollution Markets Work in Developing Countries? Experimental Evidence from India

- "If the number of laws were any measure of their effectiveness, India would have one of the cleanest environments in the world." Menon et al. (2012)
- "Emissions markets trade in a commodity created by the state, and these markets cannot function if the state cannot uphold the value of that commodity."
- Context: Surat, India a city of 7 million with a large textile manufacturing sector
- Status Quo: Firms required to install abatement equipment, incomplete enforcement (see previous work by this same team)

Surat's air is becoming poisonous, breathing becomes difficult

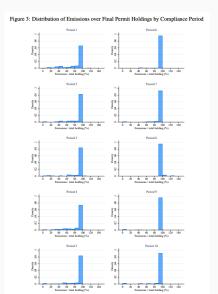
https://www.patrika.com/surat-news/surat-air-pollution-is-poisonous-breathing-difficult-3816317/

A 12-year project:

• Get buy-in from the local regulator.

- Get buy-in from the local regulator.
- Convince the regulator to install Continuous Emission Monitoring Systems (CEMS) on every plant in their jurisdiction.

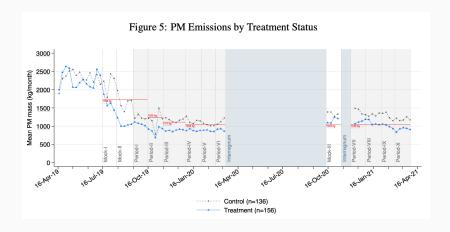
- Get buy-in from the local regulator.
- Convince the regulator to install Continuous Emission Monitoring Systems (CEMS) on every plant in their jurisdiction.
- Establish a trading platform and teach firms how to use it.


- Get buy-in from the local regulator.
- Convince the regulator to install Continuous Emission Monitoring Systems (CEMS) on every plant in their jurisdiction.
- Establish a trading platform and teach firms how to use it.
- Decide how to allocate initial permits.

- Get buy-in from the local regulator.
- Convince the regulator to install Continuous Emission Monitoring Systems (CEMS) on every plant in their jurisdiction.
- Establish a trading platform and teach firms how to use it.
- Decide how to allocate initial permits.
- Deal with missing data.

- Get buy-in from the local regulator.
- Convince the regulator to install Continuous Emission Monitoring Systems (CEMS) on every plant in their jurisdiction.
- Establish a trading platform and teach firms how to use it.
- Decide how to allocate initial permits.
- Deal with missing data.
- Have your experiment interrupted by COVID.

Establishing Credibility


Fined 2 plants and order 1 to close after first compliance period.

What effects do we expect?

- On pollution?
- On fixed costs?
- On variable costs?

Effects on Pollution

Effects on Costs

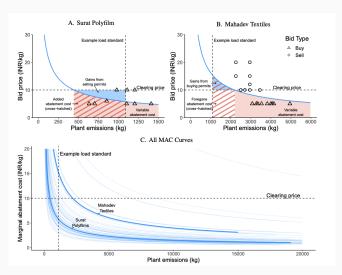
Table 4: Treatment effects on abatement costs in survey data

	Abatement capital costs (\$1000s)					Boiler house input costs (\$1000s)						
	All (1)	Cyclone (2)	Bag (3)	Scrubber (4)	ESP (5)	Total (6)	Capital (7)	Labor (8)	Electricity (9)	Fuel (10)	Materials (11)	
ETS Treatment (=1)	-3.467	0.602**	0.530*	-0.222	-4.281	11.26	-7.178	1.561	25.21*	26.87*	-0.142	
	(3.089)	(0.266)	(0.318)	(0.407)	(3.344)	(26.31)	(19.05)	(3.332)	(13.53)	(15.35)	(0.596)	
R ²	0.90	0.85	0.83	0.84	0.89	0.93	0.63	0.05	0.65	0.98	0.19	
Control mean	44.04	7.80	9.85	9.69	16.70	578.48	190.88	47.86	162.13	299.50	4.33	
Plants	276	276	276	276	276	185	218	262	247	225	283	

This table reports the effects of treatment assignment on the capital cost of APCDs (columns 1-5) and boiler house input costs (columns 6-11). In columns 1-5, the abatement capital cost is the product of the number of abatement devices at a plant and the industry-standard cost for that device for the plant's given boiler house capacity. In columns 6-11, psecifications use our best estimates for boiler house costs from the endline survey (F2)-20. All specifications control for a corresponding baseline value (FY 2017-18) but in some cases the components of the input cost aggregate differ slightly within a category between the baseline and endline survey. Electricity costs are only reported at the plant level so are not only for the boiler house. Robust standard errors are given in parentheses with statistical significance indicated by ⁴ p < 0.10; ⁴ p < 0.005; ⁴ p < 0.001.

Effects on Costs

Table 4: Treatment effects on abatement costs in survey data


	Abatement capital costs (\$1000s)					Boiler house input costs (\$1000s)						
	All (1)	Cyclone (2)	Bag (3)	Scrubber (4)	ESP (5)	Total (6)	Capital (7)	Labor (8)	Electricity (9)	Fuel (10)	Materials (11)	
ETS Treatment (=1)	-3.467 (3.089)	0.602** (0.266)	0.530* (0.318)	-0.222 (0.407)	-4.281 (3.344)	11.26 (26.31)	-7.178 (19.05)	1.561 (3.332)	25.21* (13.53)	26.87* (15.35)	-0.142 (0.596)	
R ² Control mean	0.90 44.04	0.85 7.80	0.83 9.85	0.84 9.69	0.89 16.70	0.93 578.48	0.63 190.88	0.05 47.86	0.65 162.13	0.98 299.50	0.19 4.33	
Plants	276	276	276	276	276	185	218	262	247	225	283	

This table reports the effects of treatment assignment on the capital cost of APCDs (columns 1-5) and holier house input costs (columns 6-11). In columns 1-5, the abatement capital cost is the product of the number of abatement devices at a plant and the industry-standard cost for device for the plant's given boiler house capacity. In columns 6-11, specifications use our best estimates for boiler house costs from the endline survey (FY 2019-20). All specifications control for a corresponding baseline value (FY 2017-18) but in some cases the components of the input cost aggregate differ slightly within a category between the baseline and endline survey. Electricity costs are only reported at the plant level so are not only for the boiler house. Robust standard errors are given in parentheses with statistical significance indicated by *p -0.10; *p -0.005; *m >p -0.01.

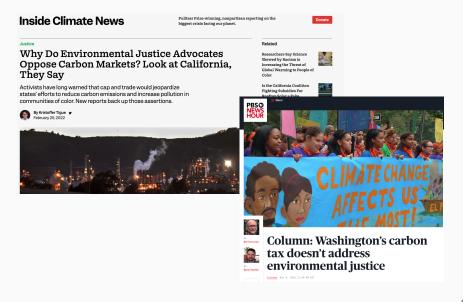
...but emissions were not held constant

Model Intuition: MAC = P

Want to estimate marginal abatement cost curves for *every* plant so that we can estimate the gains from trade

Takeaways

The model allows us to estimate counterfactuals for different regulatory regimes

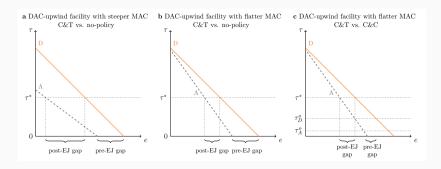

- Emissions market is 10% cheaper than command and control for same level of emissions
- For same cost, market would cut emissions by 48% (abatement costs not very elastic)
- Implies dramatic reductions in emissions possible for very little cost

What about distributional consequences?

ullet We haven't talked much about the ω_i s yet.

Distributional Considerations

Are Efficiency and Equity in Tension?

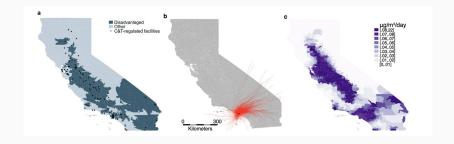


Hernandez-Cortes and Meng (2023 JPubE)

Do environmental markets cause environmental injustice? Evidence from California's carbon market

- Context: California has cap-and-trade program for large stationary emitters since 2013
- Plenty of empirical work showing low-income, minority households face higher pollution levels (the 'EJ Gap')
- Why might market based instruments increase the 'EJ Gap' even while lowering overall emissions?

Heterogeneous Marginal Abatement Costs



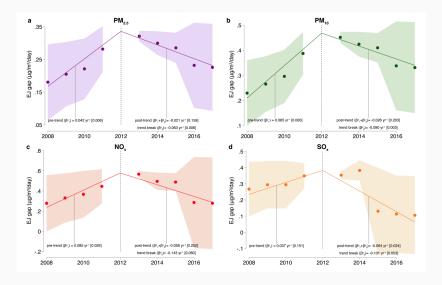
We clearly need to estimate *facility level* treatment effects.

Outline

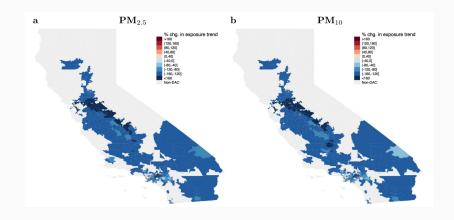
- 1. Estimate facility specific treatment effects of the policy
- 2. Feed these estimated reductions into an air pollution dispersal model
- 3. Look at how spatial distribution of pollution changes

Baseline Exposure

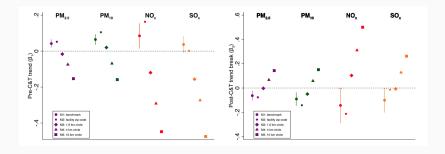
Some (very?) strong assumptions


Estimate a 'trend-break' model - allows for differential pre-trends between regulated and unregulated facilities

- Control group: Regulated vs unregulated emission sources
 - Remove electricity generators, refineries, and facilities with emissions above 75 percentile.
 - SUTVA violations?
- Functional form: Linear trends, inverse hyperbolic sine of emissions
- Heterogeneity: Homogeneous percentage effect into heterogeneous facility level effects through fixed effects.


But some nice atmospheric physics

 Pollution dispersal model (previous literature typically used 1-3 mile buffer)


Cap and Trade Narrows EJ Gap

But Considerable Spatial Heterogeneity

Importance of Pollution Modelling

Takeaways

- They didn't actually model heterogeneous marginal abatement costs!
- But the question is well posed and they show the importance of pollution dispersal modelling
- More work to be done here
 - Deschenes and Weber: Equity Impacts of a Market for Clean Air (Working Paper)
 - Muller and Mendelsohn (2009 AER): Efficient Pollution Regulation: Getting the Prices Right
 - Should we have spatially differentiated pollution taxes?

Other Recent Papers and Future Research

Better identifying abatement costs in different contexts, monitoring and evaluation

- Shapiro and Walker: Is Air Pollution Regulation too Stringent?
- Buntaine et al. Does the Squeaky Wheel Get More Grease? The Direct and Indirect Effects of Citizen Participation on Environmental Governance in China.
- Duflo, Greenstone, Pande, and Ryan: Truth-telling by third-party auditors and the response of polluting firms: Experimental evidence from India.

Long term (possibly intergenerational?) effects

 Colmer and Voorheis: The Grandkids Aren't Alright: The Intergenerational Effects of Prenatal Pollution Exposure.

Water pollution, solid waste, and other media

 Keiser and Shapiro: Consequences of the Clean Water Act and the Demand for Water Quality.