
Open Dumps and the Global Trade in Garbage

Matthew Gordon and Anna Papp∗

Click Here for Latest Version

Abstract

Globally, a large fraction of solid waste is disposed in open dumps, generating harmful
externalities. Research on this topic is limited by a lack of data, however. We
address this gap by developing methods to construct a globally representative time-
series of open dumps, starting with a small, unrepresentative sample of crowdsourced
observations. We use these observations to train a potentially biased machine learning
model that can predict dumps using satellite imagery. We then employ active learning
techniques to select and verify an approximately optimal representative subset of
predictions. This method gives unbiased estimates of dump prevalence and results in
significant efficiency gains relative to standard methods, even in the presence of model
miscalibration. We use our data to study whether internationally traded waste ends
up in open dumps. Our results show a dramatic increase in open-air landfills globally
after China banned imports of plastic waste in 2018. The increase is concentrated in
low-income countries that saw increased imports, suggesting that trade plays a role in
overwhelming local waste management systems and the subsequent leakage of waste
into the environment.
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1 Introduction

What are the impacts of the global trade in waste? Since Larry Summers argued, “the
economic logic behind dumping a load of toxic waste in the lowest wage country is impeccable”
in a controversial 1991 World Bank memo, cross-country flows of plastic scrap have increased
seven-fold. Despite Summers’ assertion, economic theory does not give an unambiguous
prediction as to the welfare impacts of this trade. This will depend on the magnitude of the
externalities generated by waste imports relative to the private benefits (Chichilnisky 1994;
Copeland et al. 2021). Yet studying these tradeoffs has been difficult, as we lack the most

basic descriptive facts about what fraction of waste imports are recycled, and what fraction
are discarded in environmentally harmful ways.

An estimated 90% of domestic waste is disposed in open dumps or burned in low-income
countries. Open dumps have substantial environmental and social implications. The open
burning of waste releases pollutants dangerous to human health, and this practice may be a
significant contributor to poor air quality in developing countries.1 Plastic leakage to marine
ecosystems is also widely documented, with possible adverse effects on the productivity and
sustainability of ecosystem services such as fishing, recreation, and pest control (Rochman et
al. 2016). However, the scale and incidence of these externalities remains understudied due to
the lack of data on open dumping. Existing research attempts to study mismanaged waste
using rough assumptions about per capita waste generation and improper disposal (e.g.,
Jambeck et al. 2015; Meijer et al. 2021). These modeled estimates make it difficult to study
causal relationships between changes in policies, waste management, and environmental and
social outcomes.2

In this paper, we devise a method to collect the data required to begin to study the scale and
impacts of open dumping. Our pipeline consists of three steps: first we collect ‘seed’ data:
non-representative crowdsourced examples of open dumps. We then use these examples to
train a potentially biased machine learning model that predicts dumps using satellite data.
Finally, we use the model’s predictions to select and verify an approximately optimally
chosen subsample of predictions. These verified predictions form the basis of a globally
representative, time-series dataset that allows us to precisely estimate the prevalence of
open dumps across regions and over time. Our sampling method is effective and results in
unbiased estimates of descriptive statistics and the causal effects of policies, even though our
1Examples of these pollutants include black carbon, a major contributor to particulate matter, and polycyclic
aromatic hydrocarbons (Pathak et al. 2023).

2Law et al. (2020) is one of the few papers to try to estimate the contribution of trade to mismanaged waste;
however, they simply assume that 25-75% of imports are improperly managed in countries with high levels
of assumed mismanagement.
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machine learning model’s predictions may be biased due to the non-representative training
data. We derive simple formulas to characterize the efficiency gains of our optimal sampling
method in the presence of model miscalibration.

We then use our data to generate a set of novel descriptive facts about the global prevalence
of open dumps. We document an environmental Kuznets curve — open dumps are rare
in very low-income countries, peak in middle income countries, and decline slightly from
the peak in high-income countries. We also document that dumps are disproportionately
found in areas with high population density in low and middle-income countries, whereas in
high-income countries dumps tend to be in slightly less dense areas. We also find that fires
in open dumps are common: 10% of dumps in low and middle-income countries experience
a fire at least once a year.

Next, we use our data to investigate whether the international trade in waste has a causal
effect on open dumping. Our empirical strategy exploits a shock to the global trade network
caused by a sudden ban in Chinese waste imports in 2018. China previously accounted
for 50-90% of global imports of waste, depending on the category. After the ban, shippers
diverted a significant fraction of this waste to countries across Southeast Asia and the rest
of the world. We use event-study and difference-in-difference regressions to study this shock,
finding that a 10% increase in net-imports of waste increases the prevalence of open dumps
by 1.1-4.5%. These effects are concentrated in low-income countries that are net importers.
Exporting countries see no increase in open dumps following a decrease in exports, suggesting
that these countries have access to alternative disposal technologies, such as recycling and
sanitary landfills.

Our data collection approach contributes to the literature on using machine learning and
satellite data for policy evaluation (see Donaldson and Storeygard 2016 and Jain 2020
for reviews). An emerging literature has begun to document the potential biases that
can result from using machine learned proxies for economic or environmental variables in
causal inference. Several recent papers propose methods that can correct for non-classical
measurement error using a sample of observations with ‘ground-truth’ data, where true labels
are known with certainty (Fowlie et al. 2019; Alix-Garcia and Millimet 2023; Ratledge et
al. 2021; Proctor et al. 2023; Angelopoulos et al. 2023; Rambachan et al. 2025; Sanford
et al. 2025; Kluger et al. 2025; Carlson and Dell 2025).

These approaches take the set of labeled data as given, and rely on the assumption that either
the labeled set is a representative sample of the broader population, or that the labeling
process can be modeled as conditional on observables. Our approach is fundamentally
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different in that we study how to optimally choose which data to label when starting with
selected non-representative data. Our resulting procedure makes estimates unbiased and
maximizes the precision of the resulting estimates for a given sampling budget. These
methods are widely applicable to other hard-to-study land uses, and more generally, the
can be used in any setting where data collection is expensive and true positives are rare in
the population of interest, but can be predicted with reasonable accuracy.

The first step of our pipeline is collecting non-representative ‘seed’ data. For this, we rely
on crowdsourcing. We collaborated with an international network of NGOs, researchers,
and activists to solicit an initial set of open-air waste sites. This initiative, which we called
“The Atlas of Plastic Waste”, has yielded over 270 submissions across 24 countries. We
supplement our crowdsourced data collection effort with existing datasets on open-air waste
sites, which are highly constrained in either geographic scope or temporal coverage. We
verify the extent and location of all sites using high-resolution satellite imagery.

In the second step, we train a machine learning model on these examples that can identify
open dumps using radar and multi-spectral satellite imagery. These methods build on recent
work using satellite imagery to identify plastic waste in more limited temporal and geographic
settings (Kruse et al. 2023). We train an XGBoost model that differentiates open dumps
from other land uses with high accuracy. The area under the receiver-operator curve (AUC)
in our validation sample is 0.96 out of 1, and balanced accuracy is 90%, demonstrating that
our model can find a distinctive spectral signature associated with open dumps in the seed
data.

Since our training data is heavily selected, and dumps are a rare land use class, even small
biases in our model’s predictions when deployed out-of-sample could dramatically impact
inferences drawn about the prevalence of open dumps. Thus, rather than use our model’s
predictions directly to generate statistics, we use them to inform an approximately optimal
sampling and verification procedure that aims to minimize the variance of estimates of dump
prevalence and change over time. Our procedure relies on Neyman (1934) optimal sampling
methods, where we oversample the predictions that our model is most uncertain about. For
sampled observations, we verify the existence of dumps using high-resolution satellite images.
This gives us globally representative, time-series estimates of open dump prevalence.

These sampling techniques are common in the active sampling literature in computer science
and remote sensing where the goal is to maximize model accuracy (Tuia et al. 2009; Stehman
2012; Zrnic and Candès 2024), but they have not been widely applied to study policy
questions in the social sciences. We derive simple formulas to characterize the efficiency of
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our method, relative to uniform random sampling, in the presence of model miscalibration.
Efficiency gains depend on the distribution of uncertainty in the data, relative to the
distribution of miscalibration. We find that, when estimating changes in open dumps over
time, a perfectly calibrated model could have given a sample with a variance 96% lower than
a uniform random sample of the same size. Our ex-post realized efficiency gains, accounting
for model miscalibration are 87% relative to uniform random sampling.

In addition to the data collection and descriptive statistics, we contribute to long standing
debates in economics about the efficiency and distributional implications of trade in the
presence of environmental externalities. We show clear evidence of the pollution havens
hypothesis – the idea that environmental regulations in one country can result in the
migration of polluting industries to less-regulated jurisdictions (see Copeland et al. 2022
for a recent review of this hypothesis and associated literature).

Prior work has demonstrated that industry location is influenced by environmental regulations
in the context of lead-acid battery recycling (Tanaka et al. 2022), and the Clean Air Act
in the US (Hanna and Oliva 2015). A few studies have examined the pollution havens
hypothesis using country-level data on the trade in plastic scrap. Kellenberg (2015) shows
that the relative stringency of environmental regulations is associated with trade in waste
- with materials flowing from jurisdictions with stricter regulations to more unregulated
locales. Thakur (2022) uses a gravity model to show how the China waste ban increased
waste flows to low-income countries. With the exception of Tanaka et al. (2022), however,
none of these studies can directly measure changes in externalities associated with these
trade flows or location decisions. Our work is the first to provide empirical evidence for the
pollution havens hypothesis on a global scale.

Our empirical strategy relies on an unanticipated policy shock — the 2018 China National
Sword policy — more commonly known as the China waste ban, which banned or restricted
the imports of 24 categories of materials, including plastic scrap, unsorted paper, and some
types of metal and electronic wastes. Aggregate trade statistics show that while total global
waste trade flows fell, several low and middle-income countries saw sharp increases in waste
imports after the ban. This natural experiment allows us to identify the effects of changes in
flows of waste traded across borders on the prevalence of open dumps. While some previous
work has studied the impacts of the China waste ban on air pollution in China and landfilled
waste in the US (Guo et al. 2023; Sigman and Strow 2024), our novel data allows us to
study an understudied outcome at a global scale.

We find that the global prevalence of open dumps increases by 50% in the year of the China
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waste ban, despite an overall decrease in trade flows. This suggests that either a large
quantity of imported waste is discarded in environmentally harmful ways, or that waste
imports overwhelm local waste management and recycling facilities. In either case, these
trade flows contribute to the leakage of waste into the natural environment and may pose a
threat to human health and ecological functioning. Event study and difference-in-difference
analyses estimate an elasticity of waste imports to open dumps of .11 to .45, depending
on the specification. Heterogeneity analyses show that the increase in dumps is highest in
low-income countries, where fires are more common and dumps tend to be found in areas
with higher population density. We also find that the increase in dumps is concentrated in
countries that see their imports rise. In contrast, in countries where exports fall, we see no
change in open dumps, likely because the alternatives to exporting waste are recycling and
sanitary landfill disposal, rather than open dumping.

The rest of the paper proceeds as follows – in Section 2, we describe relevant background,
including existing research on open dumps, and the context of the Chinese waste import ban.
In Section 3, we describe the data used for our analyses, including our crowdsourced landfills,
and the satellite data used for training the machine learning model. Section 4 describes
how we build our machine learning model and the approximately optimal active learning
procedure to generate our globally representative time-series data. Section 5 describes
our descriptive results on global time trends, the environmental Kuznets curve, population
density, and fires. Section 6 describes our analysis of the China waste import ban. Finally,
Section 7 discusses and concludes.

2 Background: Solid Waste and Trade

Solid waste generation is expected to increase by more than 70% by 2050 as the world
continues to get richer and more urbanized (Kaza et al. 2018). This trend will pose challenges
for cities in low-income countries, where waste management is already one of the largest line
items in local budgets, comparable to expenditures on policing and education (Hoornweg
et al. 2013). Yet an estimated 90% of solid waste is disposed in unregulated open-air dumps
or burned.

Open dumps generate severe externalities. Runoff from dumps contaminates water and has
contributed to the increase in ocean plastics which disrupts ecosystems and fisheries. Dumps
attract vermin which spread disease. The decomposition of organic waste generates methane
emissions which contribute to global warming, and the open-burning of waste generates air
pollution, including particulate matter and black carbon (Pathak et al. 2023).
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Existing research has argued that the mismanagement of solid waste is mostly an issue in
low-income countries (Jambeck et al. 2015; Lebreton et al. 2017; Kaza et al. 2018). In the
absence of data on mismanaged waste, these papers use simple models of waste emissions that
depend on population, GDP, and the estimated fraction of mismanaged waste. For example,
Meijer et al. (2021), finds that most ocean plastics come from a relatively small number
of river systems, mostly located in low-income countries. For the most part, these models
ignore waste traded across international borders. In trying to estimate the United States’
contribution to ocean plastic pollution, Law et al. (2020) write “no quantitative estimates
exist of the proportion of material exported for recycling that is ultimately discarded as
waste.”

Yet these trade flows are significant. Prior to 2018, around 50% of plastic waste collected for
recycling was traded internationally, and China accounted for close to 50% of imports of these
flows, including 70% of US exports and 95% of EU exports (Kellenberg 2015). Importers
use some of this waste in informal recycling processes, though anecdotally a large share of
the imports may be disposed of in environmentally damaging ways (Greenpeace 2021). As
the quote above highlights, no good estimates exist on how much of this material is used
productively or discarded.

Complaints about contamination levels in this shipments and the externalities associated
with processing the waste led to a series of progressively stricter restrictions. In February of
2013, China announced the Green Fence policy, an increase in inspections of shipments of
waste. Shipments that exceeded prescribed contamination levels could lead to the revocation
of import licenses and the forced return shipment of the container.

In July 2017, the Chinese government announced the National Sword policy, which went
into effect in January 2018, allowing very little time for anticipation. The policy banned
or restricted imports on 24 categories of scrap material, including plastic and paper waste,
and lowered the contamination thresholds on other materials to levels that were generally
considered unachievable by waste exporters in the US and Europe. At the same time, the
Chinese government cracked down on the domestic informal recycling industry. Guo et
al. (2023) find that air pollution went down after the ban in Chinese cities that had a large
recycling industry, but due to a lack of data on disposal, we don’t know how much of this
is due to a decline in productive recycling activities versus the open burning of discarded
scraps.

Appendix Figure A2 shows that Chinese imports went to nearly zero almost immediately
after the import ban went into effect. The loss of this market disrupted the global recycling
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market and led to pileups of scrap in the US and the diversion of trade to other countries
in the region. Appendix Figure A2 shows a spike in imports in Indonesia, Malaysia, and
Turkey around the time of the ban. Thailand, and the Philippines also saw large increases
in imports during this time, though total global trade flows decreased due to the loss of the
Chinese market. Much of the material that would have otherwise been exported ended up
in landfills in the US and Europe (Sigman and Strow 2024).

In Section 6, we will use this policy change to estimate the elasticity of open dumps to
imported waste. This research is important for policy, current international discussions
under the Basel Convention have debated changing the classification of plastic waste, which
would severely restrict or ban trade across borders.

3 Data

Our goal is to estimate the prevalence of open dumps across countries and over time. We
define an open dump as any aggregation of waste covering an area greater than 10m2, where
waste is directly exposed to the surrounding environment. Several countries have statutory
definitions of open dumps that refer to waste disposal sites that are not in accordance with
regulations.3 Since regulations vary across countries, we adopt a definition that is consistent
globally and can be measured with our data. To be clear, we measure the surface area of
dumps, rather than the volume of waste disposed, as it is difficult to measure the height or
density of waste piles using satellite data. Despite this limitation, the surface area of open
dumps is an important proxy for environmental impacts for a few reasons. First of all, the
surface area of a dump determines how much waste is directly exposed to the environment.
Secondly, many informal dumps have low density, without capital intensive construction
equipment, it is difficult to pile waste very high or compress it to a significant degree. Still,
to the extent that the intensive margin is important, our ability to identify open dumps from
the air is a crucial first step in identifying locations for further study.

Our size requirement excludes small and transitory piles of litter that cannot be observed
from satellite imagery. We also do not observe buried waste which leads us to exclude most
sanitary landfills, but we include the open-air working faces of some sanitary landfills that
have similar characteristics as open dumps. We also include discard pits next to recycling
facilities, for example the ones that commonly accompany paper mills in Indonesia. We
3For example in the Philippines an open dump is defined as, “A disposal area wherein the solid wastes
are indiscriminately thrown or disposed of without due planning and consideration for environmental and
Health standards” (Congress of the Philippines 2001).
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exclude construction debris and automobile junkyards, which both have different characteristics
from the dumps in our data, however we will not otherwise be able to distinguish the material
composition or the density of the waste, which we leave for future research.

In order to measure dump prevalence, we draw on techniques from machine learning known
as active statistical inference (Zrnic and Candès 2024; Hamilton et al. 2025). Intuitively, our
method starts with a non-representative sample of crowdsourced landfills. We use these sites
to train a machine learning model that can predict the probability of a landfill from satellite
data. Since the model’s predictions are not very accurate and may be biased, we do not use
them directly as measurements. Instead, we use them to inform a optimal sampling strategy
(Neyman 1934) that results in a representative dataset of high-quality labeled observations,
designed to minimize uncertainty. We use this data to obtain unbiased estimates of landfill
prevalence. We start by describing the crowdsourced data and other inputs to our machine
learning model.

3.1 Machine Learning Model Inputs

3.1.1 Unrepresentative Landfills

We gather an initial set of verified open-air landfills from various sources, including our
crowdsourced data collection effort. We partnered with an international NGO, Basel Action
Network (BAN), to create a web portal that allows individuals worldwide to submit the
locations of open dump sites and contribute to a training data set4. We received more than
270 submissions from dozens of individuals and organizations across 24 countries.

We complement this effort using several other publicly available datasets on landfills and
informal dumps that cover particular regions of the world or periods of time (Kruse et
al. 2023; D-Waste 2014; Greenpeace 2018; 2021; Climate Trace 2023). In particular, we
use nearly 1,000 additional sites from Earthrise’s Global Plastic Watch, which uses satellite
imagery to find dumps globally, though their data is only verified for 20215. As discussed
above, we don’t use training data from sanitary landfills in the US or other wealthy countries.

In order to verify the existence of these waste sites and to determine the spatial and temporal
extents of the sites, we look up historical high-resolution satellite imagery in Google Earth
Pro for each site. Figures 2, 3, and A1 show several examples of open-air waste sites in this
4https://www.ban.org/plastic-waste-transparency-project-hub/the-atlas-of-plastic-waste.
5Our complete training dataset and list of sources are available from:
https://github.com/atlas-of-plastic-waste/atlas-of-plastic-waste.
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Figure 1: Distribution of Training Data by Country

Notes: The distribution of training sites (both waste sites and control sites) by country based on crowdsourced
and other data collection.

imagery, which are typically easy to identify. For each site, we look at the first available
satellite image between 2017 and 2022, and we draw a polygon around the extent of the site
if it exists in that year. At the same time, we also create polygons for nearby areas that
are not waste sites but cover other diverse land-use categories (e.g., agricultural land, urban
areas, forests).

Given the paucity of initial training data, we followed an iterative process to collect additional
data. We would train an experimental model on what data we had on hand, and then use
the model to make a set of out of sample predictions. We would then verify some subset of
these predictions to assess accuracy, and incorporate new waste and control sites discovered
into the next round of model training. These experiments were not always systematic as we
tried a variety of modeling and sampling strategies, however it did result in a good amount
of valuable training data, especially control sites representing difficult cases that the model
would struggle to correctly classify. The most common of these were mines, quarries, and
construction sites, where piles of rubble or stones can appear similar to piles of trash.

After several early iterations, we had in total over 36,000 validated site-year observations
across 60 countries and over 18,000 control sites. Figure 1 shows the distribution of these
training sites worldwide.
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Figure 2: Comparison of Google Earth High-Resolution Imagery and Sentinel-2 Imagery

Notes: Figure shows high-resolution historical imagery from Google Earth Pro and Sentinel-2 false-color
imagery. The figure demonstrates that high-resolution imagery can generally effectively distinguish between
different land uses.

3.1.2 Satellite Data for Sites

Our primary sources of data are Sentinel-2 and Sentinel-1 satellite imagery. The European
Space Agency operates both of these satellites. Sentinel-2 is an optical satellite constellation
with a spatial resolution of 10m and a revisit frequency of 3-5 days6. Sentinel-1 is a radar
satellite that provides all-weather and day-and-night coverage. The multi-spectral coverage
of Sentinel-2 allows us to capture reflectance in the visible and near-infrared wavelengths,
which have been previously used to differentiate between plastics and other materials (Biermann
et al. 2020; Kruse et al. 2023; Cózar et al. 2024). Radar imagery of Sentinel-1 collects
information on the “texture” and “smoothness” of land cover, which helps differentiate
between waste sites and other objects made of similar materials (e.g., plastic roofs).

For each pixel located within our sites, we download satellite data using Google Earth Engine
for each year from 2017-2021. We keep cloud-free, non-water pixels across all images.7 This
results in over 7.7 million 10m pixels. We use each of the 13 bands of Sentinel-2, many
derived indices from these bands, and all Sentinel-1 bands collected in interferometric wide
6We begin our satellite analysis in 2017 when Sentinel 2-B was launched ensuring consistent data coverage.
7We use Google’s Cloud Score+ and define cloudy pixels as those with a cloud score probability higher than
65% (Pasquarella et al. 2023). We use Dynamic World to mask out water pixels (Brown et al. 2022).
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swath mode and derived indices. For a complete list of satellite bands and derived indices,
see Appendix Section A.1. For each band and/or derived index, we take the median, mean,
minimum, and maximum for each year. We also utilize focal statistics, averaging indices and
bands in a 3 km radius around each pixel to include information on nearby areas’ shapes
and characteristics.

In addition to the satellite data, we use the Dynamic World predictions of major land use
categories that Google derives for Sentinel-2 (2022). We also calculate the population density
within 5km and the distance to the nearest port for each pixel (Earth Science Data Systems,
NASA 2024; National Geospatial-Intelligence Agency 2019).

3.2 Other Data

Here we detail other data sources, not used in training the machine learning model, but in
other parts of the analysis. We use the BACI trade database to collect data on the value
and mass of waste traded between countries (Gaulier and Zignago 2010). We collect data on
products banned by the National Sword Policy, including waste plastics, paper, textiles, and
minerals (vanadium slag).8 BACI reanalyzes UN Comtrade data to attempt to correct for
reporter reliability. This is important for our use case, since some waste may be improperly
categorized, especially in countries with import restrictions. The data source clearly shows
the decline in imports from China after the waste ban, and a corresponding increase in many
other countries (see Figure A2).

We also use the NASA VIIRS Active Fire Detection product to analyze fires in open dumps
(Schroeder et al. 2025). This data is available at 375m resolution globally and uses satellite
based sensors to detect fires. We overlay VIIRS fire detections with our verified dumps to
estimate the prevalence of global garbage fires.

4 Dump Detection and Active Learning

4.1 Machine Learning Model

We train an XGBoost model using the training sites and satellite data described above (Chen
and Guestrin 2016). XGBoost models are useful for their relative computational efficiency
8China banned imports the following: waste minerals/vanadium slag (HS codes 2619 and 2620), waste
plastics (HS code 3915), waste paper (HS code 4707), and waste textiles (HS codes 5103, 5104, 5202, 5505,
6310). See, for example, https://www.laregionalagency.us/comprehensive-list-of-banned-materials/.
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and their robustness to overfitting, given a limited number of hyperparameters available for
tuning compared with neural networks. XGBoost builds an ensemble of tree-based models,
similar to random forest, however it builds the trees sequentially using gradient descent, so
that each tree tries to correct the errors of the previous trees.

For model development, we split our sites into training, testing, and validation sites. We
split our sites into 500 global clusters using a k-means algorithm based on their coordinates.
We set aside 20% of our clusters for calculating out-of-sample accuracy metrics, and use the
other 80% for choosing hyperparameters. This isolates similar dumps that are geographically
close together so that the out-of-sample accuracy metrics we report are not based on the
model having seen pixels from within the same dump, or even the same country in many
cases.

During training, we assign control pixels a relative weight of 99.6. This reflected a reasonable
a priori guess about the relative prevalence of waste pixels we expected to encounter when
deploying our model out of the training sample, which we calibrated based on early experiments.
We choose our model hyper parameters to maximize the area under the receiver-operator
curve (AUC) in the training data, a metric that is robust to heavily unbalanced classes. Our
model builds an ensemble of 100 decision trees, limiting tree depth to 25 levels, balancing
computational complexity and accuracy in the training data.9

Our model has an AUC of .96 out of the maximum possible value of 1 (Appendix Figure A4).
Setting a classification threshold that maximizes accuracy, we calculate balanced accuracy
at 90%, precision at 92%, and recall at 85%. Figure 3 shows an image of a dump in the
high-resolution Google Earth Pro imagery and our associated model predictions for the years
2017 and 2021. The model puts elevated probability on the pixels corresponding to the open
faces of the dump. Furthermore the model seems to capture changes in the shape and size
of the dump over time, in the first row we see several small patches of trash, and in the
second, the dump has been consolidated into a single larger patch, and the model accurately
captures these changes.

We analyze which features in our data seem to be most helpful in detecting dumps by ranking
them by their sum-of-split scores. This metric calculates the total reduction in the model’s
9Additional hyperparameters include min_examples = 27, forest_extraction=’DART’,
l1/l2_regularization = 5.0/3.0, split_axis = ’AXIS_ALIGNED’, growing_strategy =
’LOCAL’, shrinkage = 0.02, and num_candidate_attributes_ratio = 0.1 using the Tensorflow
Decision Forests library in Python. We choose these hyperparameters to maximize AUC, which is a metric
that incentives correctly ranking observations by the probability that they are a dump. It may lead to
miscalibrated probabilities, especially for unlikely cases, however. We thus apply a sigmoid transformation
to the resulting predictions: pi = a log(p̃i/(1 − p̃i)) where p̃i are the original predictions, and we set the
coefficient a = 3.15 to minimize log loss.
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loss contributed by that feature across all trees in the ensemble. Population, distance to the
nearest port, and the Dynamic World labels (Brown et al. 2022) are the most important
features. The Dynamic World labels are based on Sentinel 2 imagery and are a reasonable
summary of the spectral information contained in a given pixel, so it makes sense that they
would be important. Beyond that, the Sentinel 1 radar derived indices rank highly, as do
the near infrared bands and red-edge, though there is a long tail of additional features that
are important. These findings are broadly consistent with previous studies of the spectral
signatures of landfills (Biermann et al. 2020; Kruse et al. 2023; Cózar et al. 2024), however
given the large number of features that seem to contribute to the model, and the fact that in
model tuning we find that relatively deep trees improve accuracy, it appears that our model
is relying on relatively complex combinations of many features, rather than finding one or a
few proxy variables that are highly predictive of landfills.

While our accuracy metrics clearly show that our model is able to find a signal in the satellite
record that is associated with open dumps, we don’t think it is accurate enough to use the
predictions uncritically as a proxy for the ground truth. Given that open dumps are a very
rare land use class, small biases or changes in the model’s accuracy between time periods or
across locations could overwhelm our ability to detect real changes on the ground. Thus we
will not use our model’s predictions directly in analysis, but instead we use them to inform
an optimal sampling and verification strategy.

4.2 Active Sampling and Approximately Optimal Verification

Define Di as a binary indicator for whether pixel i contains an open dump. Our model
outputs pi: the predicted probability that a pixel is a dump, based on its associated satellite
data. We can define the model’s prediction errors as νi = pi − Di. A naïve estimate of the
prevalence of open dumps (µ) in any subset of N pixels could be:

µ̂naïve = 1
N

∑
i∈N

pi. (1)

Abusing notation we use N to denote both the set of pixels and the size of the set. Given our
definition of measurement error, this estimator will equal µ in expectation if 1

N

∑
i∈N E(νi) =

0. This is unlikely — a large and growing literature documents non-classical measurement
error in machine learned proxies for environmental and social science variables of interest
(Jain 2020; Proctor et al. 2023; Angelopoulos et al. 2023; Kluger et al. 2025; Sanford
et al. 2025; Rambachan et al. 2025), and we have exacerbated the likelihood of biases by
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Figure 3: Illustration of Machine Learning Model for Waste Site in Chon Buri, Thailand

(a) 2017

(b) 2021

Notes: Figure shows satellite imagery and machine learning predictions (probability of each pixel being
part of a waste site) for a small area in Chon Buri, Thailand.
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using non-representative training data. For these reasons, we do not use the predictions
of our model directly to estimate the prevalence of open-air landfills. The accuracy of our
model changes substantially over time and across different regions, making it impossible
to determine if an estimated change in landfill area is due to changes on the ground or
differential prediction accuracy, which could result from something as simple as year-to-year
changes in average cloud cover.

The prediction-powered inference literature has developed methods to correct for these
potential biases (Angelopoulos et al. 2023; Kluger et al. 2025; Lu et al. 2025). This
approach relies on a representative subset of labeled or ground-truth observations, in which
Di is known.

Let S denote the labeled set, and S < N equal the number of labeled observations. The
‘predict-then-debias’ (PTD) estimator of µ can be defined as:

µ̂ptd = 1
N

∑
i∈N

pi − 1
S

∑
i∈S

νi. (2)

In words, one can estimate the average bias of the subset in the labeled sample, and then
use that estimate to correct for bias in the naive estimator. The PTD estimator is consistent
as long as the labeled sample is representative. This clearly does not hold for our training
data. We could construct a labeled sample by randomly verifying a subset of predictions
using the higher-resolution satellite imagery from Google Earth discussed in Section 3. This
verification procedure is more accurate than the satellite predictions, but it is costly and
time-consuming. Furthermore, constructing this sample through random sampling would
result in an estimate that is unbiased, but highly uncertain. Since waste sites are a tiny
fraction of a percent of total land cover in most areas, the sample size of labeled pixels
required to obtain a reasonably precise estimate of the prevalence of landfills would be
enormous.

An alternative approach in the literature is to model the probability that a pixel is labeled
as a function of observables, and then re-weight the labeled set to more closely match the
population (Carlson and Dell 2025; Rambachan et al. 2025). This approach relies on a
conditional independence assumption, which is too strong in our setting, given that we use
our model to make predictions in out-of-sample locations where we do not have a good sense
of the distribution of observables.

Instead, we use our machine learning model predictions to inform an active sampling and
optimal verification approach (Neyman 1934; Stehman 2012; Bai et al. 2024; Zrnic and
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Candès 2024; Hamilton et al. 2025). Define our estimator as:

µ̂ = 1
N

∑
i∈N

pi − 1
N

∑
i∈N

wisiνi, (3)

where, si is an indicator for labeled sample inclusion, and wi = 1/πi are inverse probability
weights with πi representing labeled sample inclusion probabilities: P (si = 1).

Given a limited budget for sampling, we can improve the efficiency of the PTD estimator by
choosing πi according to:

min
πi

V ar(µ̂) such that
∑

i

πi = S̄. (4)

The constraint in this setup is an expected sample size constraint. In finite samples, S may
exceed S̄. If marginal labeling costs are small, this may not matter much, otherwise a risk
averse researcher should scale S̄ appropriately relative to their budget. Since the first term
in equation 3 is a constant that is observed for the whole population, assuming a fixed model
and training sample, if we assume independence across observations, then

V ar(µ̂) = 1
N2

∑
i∈N

1 − πi

πi

E(ν2
i ).

Allow p∗
i = E[Di|ki] denote the population expectation of Di conditional on the satellite

data and other predictors ki, so that E(p∗
i − Di) = 0. These p∗

i may differ from our model’s
estimated pi, because our model only estimates pi from the joint distribution of the predictors
and the Di in a selected, non-random subset of the data. Then E(ν2

i ) = p∗
i (1−p∗

i )+(pi −p∗
i )2.

The first term reflects the irreducible uncertainty of pixel i, after conditioning on observables,
and the second term reflects the increase in variance resulting from our model’s bias.

Taking first order conditions of equation 4, and solving for πi gives the familiar Neyman
(1934) optimal sampling allocation rule, in that we should set πi ∝

√
E(ν2

i ). Since we lack
ex-ante information on p∗

i , One way to approximate this optimal sampling rule is to simply
plug in the model predicted probabilities pi, which gives the sampling rule πi ∝

√
pi(1 − pi).

Of course, if our model is biased, this won’t exactly minimize equation 4, but if pi is close
to p∗

i , it will get close.

This approximately optimal sampling rule results in sampling probabilities peaking for the
pixels that the model is most uncertain about, with pi close to 0.5, and shrinking as pi

approaches 0 or 1. Intuitively, this rule is effective in our setting because the vast majority of
pixels have a very low probability of containing open dumps. While random uniform sampling
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would result in expending a lot of effort verifying pixels that are farms or forests, which look
very different from dumps, optimal sampling expends relatively more effort verifying pixels
that are close to the decision threshold10.

To demonstrate the utility of this approach, consider the following example based on a 1°×1°
scene covering an area in north-east Argentina, near the border of Uruguay shown in Figure
4. The inset shows a small open dump near the border. The right panel shows the histogram
of model-predicted probabilities for this scene — the y-axis is in log scale. The vast majority
of pixels have predicted probabilities very close to zero11. This reflects the fact that it is
quite easy for the model to distinguish some land-use classes, like forests and crops, from
open dumps, due to their much different spectral signatures. A much fewer number of pixels
have probabilities even exceeding 10%.

Neyman (1934) optimal sampling still ensures that we will sample a reasonably large number
of the low-probability pixels due to their prevalence. Sampling proportional to

√
pi(1 − pi)

means that, if probabilities were evenly distributed, we would sample about 50 pixels with
a probability of 0.5, for every 1 pixel with a probability of 10−4. However if there are
10, 000 more pixels with pi ≈ 10−4 than pi ≈ 0.5, we will sample 200 times more of the low
probability pixels than the mid probability pixels. Note that prediction errors for these low
probability pixels could be quite important for our overall estimate. Thus it is important
we sample a reasonably large number of them to learn about whether our model is badly
miscalibrated for these pixels. Still, in this stylized example, we reduce our sampling effort
on these low probability pixels by a factor of 50.

Another advantage of this technique is that, even if our machine learning model predictions
are badly miscalibrated, this will not bias our resulting estimates of the mean. Ultimately,
µ̂ is estimated based on a verified sample of pixels that is representative of the population
of pixels. Poor predictions simply mean that the variance of µ̂ is larger than anticipated,
and a larger sample size would be required for the same level of precision. Similarly, if our
model has differential accuracy across different regions or time periods, this will result in
differential uncertainty in our estimates of dump prevalence, or heteroskedasticity in other
words, but it won’t result in biased comparisons of means or trends.
10Common land-use types that our model frequently confuses with dumps include construction sites, quarries,

empty urban lots, and mines.
11No pixels have probabilities exactly equal to zero or one, except that we exclude areas labeled as surface

water by Dynamic World (Brown et al. 2022). Water is typically very easy for models to distinguish from
other land use types.
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Figure 4: A Sample Tile and Histogram of Pixel Probabilities

Notes: A sample tile near Rosario, Argentina. Inset image shows a small open dump. Histogram shows
model predicted probability distribution for all pixels in the scene (y-axis in logs).

4.2.1 Efficiency Gains with Miscalibration

We can perform some simple calculations based on the scene in Figure 4 to estimate the
precision gains associated with our sampling strategy relative to a uniform random sample.
Define σ∗

i =
√

p∗
i (1 − p∗

i ), σi =
√

pi(1 − pi), and Ei =
√

p∗
i (1 − p∗

i ) + (pi − p∗
i )2. Plugging in

our approximately optimal πi, the variance of µ̂ is:

V ar(µ̂) = 1
N2S

∑
i∈N

E(ν2
i )

σi

∑
i∈N

σi − 1
N2

∑
i∈N

E(ν2
i ). (5)

We can calculate the design effect, or the relative change in variance from following our
sampling strategy, relative to the predict-then-debias (PTD) estimator using uniform random
sampling as:

Deff = V ar(µ̂)
V ar(µ̂ptd) =

Ä∑
i∈N

E2
i

σi

ä
(∑

i∈N σi) − S
∑

i∈N E2
i

(N − S) ∑
i∈N E2

i

. (6)

In the realistic case where N >> S, we can approximate the design effect ignoring the
second terms in the numerator and denominator. Define Ri = Ei

σi
as a measure of model

miscalibration, noting that if pi = p∗
i , then Ri = 1, and Ri is increasing as the difference
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between pi and p∗
i increases. Then the design effect can be rearranged to show:

Deff ≈ 1
N

(∑
i∈N Ei)2∑
i∈N E2

i

∑
i∈N R2

i
σi∑

i∈N
σi(∑

i∈N Ri
σi∑

i∈N
σi

)2 (7)

= 1 + CV 2
σR

1 + CV 2
E

,

where CVE is the coefficient of variation of Ei, and CVσR is the coefficient of variation of Ri

weighted by σi.

To gain some intuition for this formula, first consider the case where the model is well-calibrated,
so pi = p∗

i . In this case, Ri = 1 for all i, so CVσR = 0, and the numerator simplifies to 1.
This case represents the optimal lower bound — there is no miscalibration, so the gains
from sampling depend on the denominator, which characterizes variation in the amount of
uncertainty in the data. Using D∗

eff to denote this optimal lower bound, the entire formula
simplifies to:

D∗
eff ≈ 1

N

(∑
i∈N σi)2∑
i∈N σ2

i

. (8)

By Cauchy-Schwarz, this quantity will always be less than 1. We can calculate this theoretical
quantity based on the distribution of pi in the Argentinian scene described above, and we find
D∗

eff = 0.0012. In other words, if our model was perfectly calibrated, the active sampling
method would reduce the variance of µ̂ relative to µ̂ptd by 99.88% for the same sample size.

On the other hand, given that our model is imperfect, the correlation between the miscalibration
Ri, and the sampling weight σi, becomes important. We can rewrite 1 + CV 2

σR as:

1 + CV 2
σR =

∑
i∈N

E2
i

σi

∑
i∈N σi

(∑
i∈N Ei)2 , (9)

In an extreme case where our predictions were random noise, so Ei and σi are independent,
this becomes:

1 + CV 2
σR = N

∑
i∈N E2

i

(∑
i∈N Ei)2

1
N2

∑
i∈N

1
σi

∑
i∈N

σi (10)

≈ (1 + CV 2
E )(1 + CV 2

σ ),

where the second line comes from taking a second order Taylor approximation of 1
σi

. In this
case, Deff ≈ 1/D∗

eff . Now our highly variable weights blow up the variance, and we do much
worse than a random sample for the same sample size. An intermediate case is if the model
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just predicts a constant for all i, then our method reduces to uniform random sampling and
Deff = 1.

Thus, ultimately the efficiency gains are a function of both model calibration and the
distribution of uncertainty in the population. This is an empirical question to which we
will return in Section 4.3.

4.2.2 Estimating Changes

This sampling and verification method allows us to estimate the prevalence of informal
landfills in levels precisely. Many interesting research questions depend on changes in the
prevalence of landfills over time, however. We can easily adapt our approach to precisely
estimate changes, however, by simply sampling with πi ∝

»
pchg

i (1 − pchg
i ), where pchg

i is the
probability that pixel i has changed from a dump to non-dump or vice-versa.

Though more sophisticated machine learning techniques can estimate pchg
i directly given a

time-series stack of satellite images and corresponding training data, these models tend to be
computational and memory intensive. More pressingly, our training data is not temporally
balanced, and many observations only correspond to the observation of a dump in a particular
year. For these reasons, we use a simpler model that is trained to estimate pi in levels based
on the images from a particular year. We then make independent predictions for each year
of interest, giving a vector of probabilities: pi = [pi,2017, ..., pi,2021].

Any approach using this vector of predictions to estimate the probability that a pixel has
changed needs to make an assumption about serial correlation in the model’s errors. We
assume that pixel-specific model errors are strongly correlated. In particular, we make a
simple assumption: if min(pi) is a dump, then all of the pit are dumps, and if max(pi) is
not a dump, then all the pit are not dumps. This implies a simple way to calculate pchg

i as:
pchg

i = max(pi) − min(pi). This is clearly not exactly correct, but as above, miscalibrated
estimates of pchg

i will only matter for the variance of our results.

Since levels and changes are both of interest, we dedicate half of our sampling budget to
estimating each. We use the predicted probabilities from our machine learning model for
2018 as the pi and the difference between the minimum and maximum probabilities for
2017-2021 as the pchg

i . Once we decide to sample a given pixel, it is relatively cheap to
view the complete set of historical satellite imagery available for that pixel in Google Earth
Pro. Therefore, even though we only have satellite imagery (and therefore machine learning
predictions) for 2017-2021, we extend our sample temporally by performing verifications for
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2011-2023.

4.3 Model Deployment and Verifications

After completing model and hyperparameter testing, we train a final model using all pixels
from all sites in both the training and validation sets so that our final model can learn from
all of the examples we have. We then deploy this model globally out-of-sample to make
predictions using the Vertex AI platform integrated with Google Earth Engine. Afterwards
we verify an approximately optimal subset of these predictions.

The economics of our deployment strategy may be interesting to some readers. Since
Sentinel-2 has a spatial resolution of 10 meters, making predictions for the entire land area
of Earth for multiple years is expensive. Downloading satellite data, preprocessing features,
and then using our model to make predictions for a set of pixels can be done as part of a
single ‘task’ that scales well within contiguous areas, but is subject to memory constraints on
Google’s servers. Thus we define our task to run on contiguous 1° × 1° tiles (approximately
111 km x 111 km at the equator), which are the largest tiles that we can consistently run
without hitting constraints.

Running this sequence of operations takes on average about 1 hour per tile-year. Thus we
choose 500 tiles, stratified based on a rough estimate of where we expect to see the biggest
changes in our outcome variable of interest (open dumps). We calculate the per-capita
change in waste imports from 2017 to 2019 at the country level, and multiply it by the
estimated fraction of mismanaged waste at the country level from Kaza et al. (2018). We
then allocate this to tiles within countries by multiplying by tile population. The left panel
of Figure 5 shows six strata defined by this variable using the 5th, 25th, 50th, 75th, and
95th percentiles as thresholds. We then sample an equal number of tiles within each stratum
with probabilities proportional to the tile population to focus our analysis on areas where
the externalities of improper waste management are large due to the proximity to population
centers. The right panel in Figure 5 shows our selected tiles in red. For all of our results
we re-weight tiles by the inverse probability of selection so that results are representative of
global land area.

In each tile, we use our model to make predictions for all pixels with at least one high-quality,
cloud-free Sentinel-2 and Sentinel-1 image for each year between 2017 and 2023. We exclude
water pixels, and for pixels with missing imagery we impute the tile median probability.

We then use these predictions to apply our approximately-optimal sampling strategy within
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Figure 5: Strata and Tile Sample for Global Analysis

Notes: Figure illustrates global deployment on 1° × 1° tiles. The left panel shows six strata based on
estimated changes in mismanaged imports 2017-2019. Units are the inverse hyperbolic sine of change in the

dollar value of mismanaged imports. The right panel shows selected tiles in red.

tiles. For each chosen pixel, we ask two experts trained in visual interpretation of satellite
imagery to independently ascertain whether the pixel is an open dump using the high-resolution
Google Earth Pro historical imagery for all years from 2011-2023. For years where no high
resolution imagery exists, we perform linear, pixel-specific interpolation using values from
surrounding years. In 98.4% of cases the experts agree. In the remaining 1.6% of cases, we
have one of the authors break the tie.

This verification process is also time consuming and expensive. We set our expected sampling
budget to 15,000 pixels globally, which comes out to an expected 30 pixels in each of our 500
tiles. Thus our results are highly uncertain within tiles, but become more precise at higher
levels of aggregation.

4.3.1 Model Calibration

Figure 6 shows model calibration plots. The x-axis shows the model predicted probability
and the left y-axes show the fraction of pixels in that probability bin that were verified
as containing an open dump. If our probabilities were perfectly calibrated, the blue line
would equal the 45 degree line. Clearly this is not exactly the case - at low probabilities,
we somewhat overestimate the probability of dumps, and at relatively higher probabilities
(> 20%) our model is too conservative. Still, it is clear that our model’s predictions contain
information.

A similar, but noisier story holds for our predicted changes, as seen in the right panel, though
some of the variation at higher predicted probabilities is due to the relatively small number
of pixels sampled at those probabilities. In both plots, the grey bars show a histogram of
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the number of pixels at each predicted probability estimated for the entire world, with the
axes in log scale on the right.

Figure 6: Model Calibration

Notes: Figure shows calibration plots in blue for pi and pchg
i against dashed black 45 degree line. Model

estimated probabilities are on the x-axis and relative open dump frequencies are on the left y-axis in black.
Grey histograms and right y-axes show the estimated number of pixels at each estimated pi.

We can use this information to calculate the ex-post efficiency of our approximately optimal
sampling strategy, by estimating p∗

i as a function of pi, and then calculating our realized
design effect. We estimate p∗

i as a function of pi using a LOESS regression, and plug it in
to equation 7. We find a design effect of 0.41, indicating that we will be able to estimate
mean dump prevalence with a variance 60% smaller than if we had used uniform random
sampling. In other words, we have increased our effective sample size by 1/0.41 = 2.44, as if
we had sampled 36,585 pixels randomly instead of our 15,000 strategically chosen pixels. We
can also calculate D∗

eff , the lower bound of the design effect that we would have obtained
with a perfectly calibrated model, and we find a value of 0.14, indicating that miscalibration
reduced the value of our sampling strategy.

When it comes to estimating changes efficiently, we do even better. We estimate an ex-post
design effect of 0.17, relative to an optimal lower bound of 0.06. This gives an effective
sample size when estimating changes of more than 88,000 pixels.

5 Descriptive Facts

Our method allows us to generate a novel set of descriptive facts about the distribution of
open dumps globally. We estimate the fraction of global land area covered with open dumps
in 2018 was 2.76 × 10−5 (95% CI: [0.9, 4.3] × 10−5). This corresponds to an area of more
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than 4,000 square kilometers, larger the US state of Rhode Island. As a point of reference,
this is about 0.2% of estimated urban land surface area in 2015.12

Figure 7 shows the time trend of our global estimate. There was a large jump between 2017
and 2018, corresponding to the year of the Chinese waste import ban. Our point estimates
indicate a 50% increase in global dump area. While it is difficult to claim causality based on
a single time series, it is strongly suggestive that the ban lead to a global increase in dumps,
despite the decrease in international trade flows. We also find a similar increase between
2013 and 2014, corresponding to the year of the Green Fence policy, when China increased
inspections on waste importers.

Figure 7: Global Results: Share of Land Area Covered by Waste Sites

Notes: Estimates based on 15,000 verified pixels selected using approximately optimal sampling technique.
Bootstrapped 95% confidence intervals.

These increases are not obvious. If Chinese recyclers discarded a large fraction of the imports
in open dumps, then we would expect dumps in China to go down after the ban, especially
if the alternative is for waste to end up in sanitary landfills in high-income countries.
Instead the pattern suggests that the waste was diverted to countries that had worse waste
12Estimates of urban land area from CIESIN (Low Elevation Coastal Zone (LECZ) Urban-Rural Population

and Land Area Estimates, Version 3).
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management practices than China. We explore this further in Section 6.

Figure 8 shows the prevalence of open dumps plotted against GDP per capita. The plots
clearly show the existence of an ‘Environmental Kuznets Curve’ (EKC) in both the verified
points (left) and the bias-corrected country level estimates (right) (Grossman and Krueger
1995). Low income countries have the lowest prevalence, presumably because they generate
less waste. Dump prevalence sharply increases for middle income countries, and then declines
a bit for high-income countries, though the right side of the EKC is fairly flat. This decline
could reflect increased usage of sanitary landfills and other waste disposal techniques that
are likely to be less environmentally harmful.

Figure 8: Dump Prevalence vs GDP Per Capita

Verifications Bias-Corrected Country Estimates

Notes: Estimates of dump prevalence vs country GDP, based on 15,000 verified pixels selected using
approximately optimal sampling technique. Left panel shows average prevalence using only verified pixels,

calculating means within country-GDP per capita deciles. Right panel shows debiased country-level
estimates estimated using equation 3. Plots show LOESS smoothed lines and bootstrapped 95% confidence

intervals with 1000 replicates.

We also find more evidence of heterogeneity in waste management practices across countries.
Figure 9 shows the prevalence of fires in open dumps in different types of countries. Strikingly,
nearly 10% of dumps in low-income countries have at least one fire detected in a given year.
In high-income countries, the number is 2%. In China, the figure is also close to 2%, averaging
across years. The figure also shows the comparison between waste net-importing countries
and other countries — it seems that dump-fires are less frequent in importing countries, but
the estimates are noisy.

Lastly, Figure 10 shows the prevalence of open dumps with respect to population density.
In all countries, dumps are concentrated in areas at the 80-100th percentile of population
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Figure 9: Garbage Fire Prevalence

Notes: Estimates of dump fire prevalence by net importer status, country income classification, and for
China, based on 15,000 verified pixels selected using approximately optimal sampling technique. Dump

fires defined as the intersection of at least one VIIRS fire detection during the year with a verified dump.
Net importer defined as imports greater than exports using Gaulier and Zignago (2010). Income uses

World Bank classification threshold of $13,935 GDP per capita.
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density. Waste is generated in population centers and is costly to transport, facts which
are sufficient to explain this pattern. Given the externalities associated with open dumps,
however, optimal policy might involve reducing human exposure to open dumps by locating
dumps in less-dense areas. We see some evidence of this occurring in high-income countries
represented by the dots in blue. In these countries, waste is relatively less prevalent at the
90-100th percentile of population density than at the 80-90th percentile. In fact we see almost
no waste in the very densest cities of rich countries at the 99th percentile, where a density
of 27,045 people per square kilometer approximates the population density of Manhattan.

In contrast, dumps are nearly monotonically increasing in population density in low and
middle income countries, where we see the highest levels of dumps at the 95th and 99th
percentile of population density.

Figure 10: Dump Prevalence vs Population Density

Notes: Point estimates of dump prevalence by population density decile, plus 95th and 99th percentiles,
based on 15,000 verified pixels selected using approximately optimal sampling technique. Blue points show

estimates for high income countries, and red points show combined low and middle income country
estimates (World Bank classification threshold of $13,935 GDP per capita). Population density data is

based on a 1km grid from Earth Science Data Systems, NASA (2024).
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6 Dumps and Trade

We use the natural experiment induced by the Chinese waste import ban to estimate how
much imported waste is mismanaged. On one hand, if imported waste is fully used in
recycling processes, we might not see any increase in open dumps. On the other hand, if the
raw material used in recycling is heavily contaminated and a large fraction is discarded, we
should see dumps increase in countries that saw their imports increase.

Our primary measure of open dumps is the area estimated from manual verifications, as
described in the previous sections. This approach provides a longer time series (2012-2023)
than the debiased machine learning predictions, which only cover 2017 to 2021, though we
show robustness of our estimates to incorporating these predictions in the years in which
they are available. As discussed in Section 2, we only measure the surface area of dumps, so
we can only detect extensive margin increases in waste mismanagement. To the extent that
imported waste is piled up or compressed in landfills, it will bias downward our estimates of
the fraction of mismanaged waste.

We define waste imports and exports as the trade in products banned by China’s National
Sword Policy, including waste plastics, textiles, paper, and minerals. We use CEPII-BACI
derived from UN Comtrade data to collect bilateral trade flow quantities and values for
2012-2023 (Gaulier and Zignago 2010).13 We then aggregate our verified open dump observations
to the country level to merge with the country-level trade data. These country-level estimates
have considerable uncertainty, and the uncertainty varies across countries due to a differing
number of verified observations in different countries. Thus we will estimate all of our
regressions using variance-weighted least squares, where we use the inverse of the empirically
estimated country-specific variance as weights to increase precision.14 Our final sample
includes estimates of dump prevalence in 117 countries, however we only verify greater than
zero dump pixels in all years for 50 of these countries.

As a first exercise, we regress net waste imports in each year on dump prevalence, controlling
for country and year fixed effects. The results are found in Appendix Table A1, using log
dump area in column one, for the countries with verified dumps, and dump area in levels in
column two for the complete sample. In both cases, we find a positive association between
13Values are available for most countries in all years. To create a complete panel of trade quantities, we impute

missing country-year quantity observations by applying the country-specific average value-to-quantity ratio
from years with available data.

14For some countries with a limited number of verifications we observe no open dumps, which would result
in an empirical variance estimate of 0. We correct for this by estimating an upper 95% confidence interval
for dump prevalence using U = 1− .051/n. We then estimate the country variance as U(1−U)/n (Clopper
and Pearson 1934).
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the changes in the quantities of imported waste and changes in the area of open dumps,
though the relationship in the complete sample is only significant at 90%. Specifically, a
10% increase in waste imports in a given year is correlated with a 2.5% to 4.5% increase in
open dump area for the same year depending on the specification.

This simple panel fixed effect specification identifies the causal effect of imports on dump
prevalence, conditional on the assumption that there are no time-varying trends that correlate
with both changes in imports and changes in dump area. To analyze the plausibility of this
assumption, we leverage changes in imports around the timing of China’s National Sword
Policy as a quasi-exogenous shock. We estimate a continuous two-way fixed effects model:

log Dit = β∆WasteImportsi,2016−19 × Post-2016 + γi + δt + eit (11)

and its corresponding event-study specification:

log Dit =
2023∑

t=2011
βt∆WasteImportsi,2016−19 × Tt + γi + ϵit (12)

where Dit is the estimated open dump area in country i and year t. The continuous treatment
variable, ∆WasteImportsi,2016−19, captures a country’s change in waste trade exposure and is
calculated as the difference in net waste imports (imports minus exports) between 2019 and
2016. In equation 11, we interact this time-invariant measure with Post-2016, an indicator
variable for years after the policy’s 2017 announcement. The model includes country (γi)
and year (δt) fixed effects. Equation 12, interacts our continuous ‘treatment’ variable with
dummies for each year Tt. This allows us to inspect for pre-trends that could give evidence
of confounding variables associated with changes in dumps in the countries that saw a large
import shock, and also see how the shock persists over time.

Table 1 presents the results of estimating equation 11. Similar to the panel results, we see a
highly significant and positive effect of the waste-ban induced import shock on the prevalence
of open dumps in the years 2017-2023. Similar to above, column (1) shows results in logs for
countries with non-zero open dump area in all years, and column (2) shows the full sample
in levels. The elasticity estimates imply a 1.1 to 2.3% increase in dumps for a 10% increase
in imports. These estimates are similar, though slightly smaller than we find in the panel
regressions.

For the coefficient of interest β to identify the causal elasticity of dumps with respect to
imports, ∆WasteImportsi,2016−19 must not be correlated with unobserved drivers of time
trends in open dumps (Callaway et al. 2021). This is plausible in our setting — not only
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Table 1: Effect of Change in Net Imports on Open Dump Area

Dependent variable:

Log(Dump Area Fraction) Dump Area Fraction (x Million)

(1) (2)

∆ Net Import Quantity
× Post-2016

0.0003∗∗ 0.0005∗∗∗

(0.0001) (0.0002)
p = 0.046 p = 0.007

Elasticity 0.111 0.234
Number of Countries 50 117
Observations 501 1,534

Note:
Table shows results of regression accoring to equation 11 for 2012-2023. Column (1) shows log
results for countries with non-zero open dump area, while Column (2) shows level results. All
columns are weighted by the variance the open dump area. Import quantities in 1000s of tons.
SEs clustered by country. ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.

was the timing of the ban unanticipated, but the magnitude of the import shock was mostly
determined by the structure of pre-ban international trade patterns. Since China has a
significant trade surplus with the US in manufactured goods, shipping from the US to China
is cross-subsidized by the need for container ships to make a round trip, thus making it
affordable to ship recycled materials from the US to China. Since these ships continued to
make the round trip journey after the waste ban, the most convenient destinations for the
recycled goods were the places that were on the way back to China, or only required a short
detour.

Furthermore, while it is still plausible that the geographic locations of these countries, or their
positions in the international trade network are correlated with unobservable, time-varying
determinants of changes in landfill prevalence, we should expect most of these determinants
to evolve slowly over time. Similarly, the prevalence and extent of open dumps changes
slowly of time. In contrast, the suddenness and size of the import shock should allow us to
see changes relative to any background trends.

Figure 11 provides evidence for the plausibility of this argument by plotting the coefficients
of the dynamic event-study estimated from equation 12 in logs (Panel A) and levels (Panel
B). We see very little in the way of pre-trends, showing that the waste shock was orthogonal
to trends determining the evolution of open dumps in the years before the waste ban. The
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estimated coefficient then jumps in 2017 and 2018, the years of the announcement and
implementation of the ban. Interestingly, the coefficient losses significance by 2019, and the
point estimates approach zero by six years following the ban.

Figure 11: Effect of Change in Net Imports on Open Dump Area, Event Study Version

Notes: Figure shows estimates of the coefficients of the event-study regression (equation 12) for 2012-2023.
The reference year is 2016. Panel A shows the coefficients on changes in imports (000s of tons) from

2016-2019 with log dump area as the dependent variable for countries with non-zero open dump area in all
years. Panel B shows results for dump prevalence in levels as the dependent variable for all countries.

Import quantities in 1000s of tons. SEs clustered by country. Bars show 95% confidence intervals.

These dynamic effects could be evidence of transition frictions, it is possible that new
importing countries could not handle the large inflows of waste immediately, but after several
years, they were able to set up the required infrastructure for recycling and proper disposal.
An alternative explanation is that the countries responded with their own regulations on
waste imports. This was the case for several countries. Malaysia banned waste imports
shortly after China, and several other countries, including Vietnam and Indonesia passed
their own bans in the following years. In this case, the 2016-2019 import shock would not
be predictive of waste imports during the later years of the study period.

These findings are robust to several alternative specifications, including unweighted versions
of the regressions, averaging pre- and post-policy imports to calculate the change in net
imports, and using alternative categories of waste imports. We show the estimated coefficients
of these alternative specifications in Appendix Figure A5.
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6.1 Heterogeneity

Next, we examine how the impact of waste trade changes on open dump area varies across
different countries, regions, and contexts.

6.1.1 Net Importers and Net Exporters

First, we classify countries as net importers (imports > exports) or net exporters based
on their average trade flow quantities from 2012 to 2023. Figure A3 shows a map of which
countries fall in each category. The map is also colored by the changes in imports and exports
respectively from 2016-2019. Net importing countries with notable increases in waste imports
during this period include Vietnam, India, Indonesia, Turkey, Thailand, and Malaysia. Net
exporting countries with large decreases in waste exports include Ghana, the United States,
Japan, France, the United Kingdom, Australia, and Canada.

Figure 12: Effect of Change in Imports and Exports on Open Dump Area, by Trade
Classification

Notes: Figure shows results of regression according to equation 11 for 2012-2023, separately for net
importers and net exporters. The main independent variables are changes in imports for net importers and

changes in exports for net exporters. Panel A shows log results for countries with non-zero open dump
area, while Panel B shows level results for all countries. Import and export quantities in 1000s of tons. SEs

clustered by country. Bars show 95% confidence intervals.

We rerun regression 11 separately for net importers and net exporters. For net importers
(exporters), the main independent variable is the change in waste imports (exports). Figure
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12 shows that the main results are driven by net importing countries. The blue lines in
Figure 12 show that increases in waste imports are correlated with increases in open dump
area in net importer countries. For net exporting countries, decreases in exports are also
correlated with increases in open dump area, as the negative coefficient in red shows, but
these results are very imprecisely estimated.

Notably, the net importing countries tend to be low and middle income countries with less
developed waste management infrastructure, while exporting countries (with the exception
of Ghana) tend to be high-income countries. If these countries have alternative means of
disposing waste, such as recycling, incineration, or deposition in sanitary landfills, this could
explain the results that we observe.

Table 2: Effect of Change in Net Imports on Open Dump Area, by GDP Per Capita

Dependent variable:

Log(Dump Area Fraction) Dump Area Fraction (x Million)

(1) (2)

∆ Net Import Quantity
× Post-2016

0.0003∗∗ 0.001∗∗∗

(0.0001) (0.0002)
p = 0.044 p = 0.004

× High Income −0.0004∗∗ −0.0002
(0.0002) (0.001)

p = 0.015 p = 0.732

Observations 501 1,521

Note:

Table shows results of regression accoring to equation 11 for 2012-2023, including an additional
interaction term for high-income (>$13,935 GDP per capita) countries. Column (1) shows log
results for countries with non-zero open dump area, while Column (2) shows level results. All
columns are weighted by the variance the open dump area. Import quantities in 1000s of tons.
SEs clustered by country. ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.

6.1.2 GDP Per Capita

We next look at heterogeneity by country income. We use the World Bank’s threshold
of a GDP per capita of $13,935 to define high-income countries and include an additional
interaction term in equation 11 with dummy variable variable for high-income countries.
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Table 2 shows that the effects of imports on dump prevalence are only positive and significant
in lower-income countries. In fact, the coefficient on high-income countries is negative, and
highly significant in the specification where the dependent variable is in logs.

7 Conclusion

In this paper, we develop a methodology to generate globally representative time-series
estimates of the prevalence of open dumps. We use crowdsourced, non-representative training
data to train a biased machine learning model that predicts dumps based on satellite imagery.
We then use active sampling methods to choose an optimal subset of predictions to verify
using high-resolution imagery. We choose these predictions to make our estimates of open
dump prevalence as precise as possible, and we come up with a simple formula to characterize
the efficiency gains unlocked by our method, relative to uniform sampling, in the presence of
model miscalibration. Our methods can be widely applied to other types of untracked and
difficult-to-detect phenomena.

We use our data on dumps to present new descriptive facts about the global distribution
of dumps, as well as causal evidence on the relationship between waste imports and open
dumps. We demonstrate the existence of an environmental Kuznets curve for open dumps.
We also show that dumps are concentrated in places with high population density, especially
in low-income countries. A high fraction of dumps (10%) experience frequent fires — at least
one a year.

Turning to our analysis of trade flows, we see a large increase in dumps globally in the year
that China banned imports of several categories of waste, including plastics, paper, minerals,
and textiles. The increase is concentrated in low-income countries, and countries that are
net-importers of waste. This provides evidence that a lot of exported recycled materials are
ultimately discarded in poorly managed dumps in low-income countries.

There is plenty of room for further research on this topic. Our data and methods should
be useful to more precisely measure fires, air pollution, and fishing impacts associated with
informal waste sites, which will lead to an improved understanding of plastic waste impacts
on human health and ecosystem services. These are urgent research questions, given the
long lifetimes of plastic and the rapid growth rate of plastic production. More work needs to
be done on understanding the economic impacts of dumps, and the recycling jobs associated
with imported waste as well. Dumps may provide jobs to informal workers, but they also
have a high opportunity cost to the extent that they are located in dense and rapidly growing

34



cities.

Our work is also relevant for multilateral environmental and trade policy. In 2019, 187
countries signed an amendment limiting exports of plastic waste to developing countries, but
several major economies, including the US, did not participate (United States Environmental
Protection Agency 2024). Our results on the impacts of these international trade flows can
inform future negotiations.
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A Additional Data Details

Figure A1: High-Resolution Satellite Data Verification Example

Notes: Figures show two examples of waste sites in Google Earth high-resolution satellite imagery.

A.1 Satellite Data Details
We collect the following satellite and other data for each pixel in our sample.

• Sentinel-1: All bands as well as DpRVIVV, VHVVR, VVVHR indices.

• Sentinel-2: All bands (B1-B12) as well as NDVI, BSI, NDWI, UI, MNDVI, MNDWI,
CSI, DBSI, NDSWIR, NormNIR, NormG, NormR, SWIR1SWIR2, NIRNIR2, RE1RE2,
RE2RE3, BG, BR, and GR.

• Other Data:

– Distance to ports in meters

– Population for 2010, 2015, and 2020 very close and close to each pixel

– Probability of complete coverage by water, trees, grass, flooded vegetation, crops,
shrub and scrub, built, bare, and snow and ice land uses from Dynamic World
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Sentinel-1 Indices

• DpRVIVV (Dual-Polarized Radar Vegetation Index VV): DpRVIVV = 4×VH
VV+VH

. A radar-based vegetation index that uses the VH and VV polarizations to estimate
vegetation density.

• VHVVR (VH/VV Ratio): VHVVR = VH
VV . Ratio of cross-polarized (VH) to

co-polarized (VV) backscatter, sensitive to vegetation structure and volume scattering.

• VVVHR (VV/VH Ratio): VVVHR = VV
VH . Inverse ratio of cross-polarized to

co-polarized backscatter, providing complementary information to VHVVR.

Sentinel-2 Indices

• NDVI (Normalized Difference Vegetation Index): NDVI = NIR−Red
NIR+Red = B8−B4

B8+B4
. Quantifies vegetation by measuring the difference between near-infrared (strongly
reflected by vegetation) and red light (absorbed by vegetation).

• BSI (Bare Soil Index): BSI = (SWIR1+Red)−(NIR+Blue)
(SWIR1+Red)+(NIR+Blue)

= (B11+B4)−(B8+B2)
(B11+B4)+(B8+B2)

.
Designed to identify bare soil areas and differentiate them from vegetation and water.

• NDWI (Normalized Difference Water Index): NDWI = Green−NIR
Green+NIR = B3−B8

B3+B8.
Maximizes reflectance of water by using green wavelengths and minimizes low reflectance
of NIR by water features.

• UI (Urban Index): UI = SWIR2−NIR
SWIR2+NIR = B12−B8

B12+B8. Highlights urban areas by
exploiting the high reflectance of built-up areas in SWIR2 compared to NIR.

• MNDVI (Modified NDVI): MNDVI = NIR−SWIR2
NIR+SWIR2 = B8−B12

B8+B12. A variant of
NDVI that uses SWIR2 instead of red, providing different sensitivity to vegetation
properties.

• MNDWI (Modified Normalized Difference Water Index): MNDWI = Green−SWIR1
Green+SWIR1 =

B3−B11
B3+B11. Enhances open water features while suppressing noise from built-up land,
vegetation, and soil.

• CSI (Char Soil Index): CSI = NIR
SWIR2 = B8

B12. Ratio that helps identify charred
or burned soils and can detect recent fire events.

• DBSI (Dry Bareness Index): DBSI = SWIR1−Green
SWIR1+Green − NIR−Red

NIR+Red = B11−B3
B11+B3 −

B8−B4
B8+B4. Designed to detect dry barren areas by combining a moisture-sensitive index
with NDVI.

• NDSWIR (Normalized Difference SWIR): NDSWIR = NIR−SWIR1
NIR+SWIR1 = B8−B11

B8+B11.
Normalized difference between NIR and SWIR1, sensitive to vegetation moisture content.

• NormNIR (Normalized NIR): NormNIR = NIR
NIR+Green+Red = B8

B8+B3+B4. Proportion
of NIR reflectance in the total reflectance of visible and near-infrared bands.
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• NormG (Normalized Green): NormG = Green
NIR+Green+Red = B3

B8+B3+B4. Proportion
of green reflectance in the total reflectance of visible and near-infrared bands.

• NormR (Normalized Red): NormR = Red
NIR+Green+Red = B4

B8+B3+B4. Proportion
of red reflectance in the total reflectance of visible and near-infrared bands.

• SWIR1SWIR2 (SWIR1/SWIR2 Ratio): SWIR1SWIR2 = SWIR1
SWIR2 = B11

B12. Ratio
between two SWIR bands that can highlight certain mineral compositions and soil
properties.

• NIRNIR2 (NIR/NIR2 Ratio): NIRNIR2 = NIR
NIR2 = B8

B8A. Ratio between two
near-infrared bands that can provide subtle information about vegetation structure.

• RE1RE2 (Red Edge 1/Red Edge 2 Ratio): RE1RE2 = RE1
RE2 = B5

B6. Ratio
between two red edge bands sensitive to chlorophyll content and vegetation stress.

• RE2RE3 (Red Edge 2/Red Edge 3 Ratio): RE2RE3 = RE2
RE3 = B6

B7. Ratio
between two red edge bands that can detect subtle changes in vegetation health.

• BG (Blue/Green Ratio): BG = Blue
Green = B2

B3. Ratio between blue and green
reflectance, useful for water quality assessment and algal bloom detection.

• BR (Blue/Red Ratio): BR = Blue
Red = B2

B4. Ratio between blue and red reflectance,
sensitive to atmospheric scattering and certain water properties.

• GR (Green/Red Ratio): GR = Green
Red = B3

B4. Ratio between green and red
reflectance, related to chlorophyll absorption and vegetation properties.
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B Additional Background

Figure A2: Plastic Scrap Imports to China and Indonesia

Notes: Figures show imports of categories regulated by the National Sword Policy in China from the UN
Comtrade database for China (left panel) and Indonesia, Malaysia, and Turkey (right panel). Both panels
also show the Green Fence Policy (February 2013), the announcement of the National Sword Policy (July
2017), and the effective date of the National Sword Policy (January 2018).

Figure A3: Net Importers and Exporters, 2012-2023

Notes: Figures show countries classified as net importers (imports > exports, left panel) and net exporters
(right panel) based on their average trade quantities from 2012 to 2023. Shading shows changes in imports
before (2016) and after (2019) China’s National Sword Policy.
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Figure A4: Machine Learning Model Receiver-Operator Curve (ROC)

Notes: The receiver-operator curve (ROC) for our final model described in the text. This curve traces the
tradeoff between increasing true positive and false positive rates as the classification threshold increases from
the bottom left to the top right. The AUC is the total area under this curve and ranges between 0.5 and 1.
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C Additional Results
Table A1: Waste Imports and Open Dump Area, 2012-2023 (All Countries, Excluding China)

Dependent variable:

Log(Dump Area Fraction) Dump Area Fraction (x Billions)

(1) (2)

Log(Import Quantity) 0.454∗∗∗

(0.083)
p = 0.00001

Import Quantity 0.0003∗

(0.0002)
p = 0.094

Elasticity 0.454 0.249
Number of Countries 50 117
Observations 501 1,416

Note:
Table shows results of a simple panel regression of open dump area on waste import quantities
for 2012-2023. Column (1) shows log results for countries with non-zero open dump area, while
Column (2) shows level results. All columns are weighted by the variance the open dump area.
Import quantities in 1000s of tons. SEs clustered by country. ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Figure A5: Effect of Change in Net Imports on Open Dump Area, Robustness

Notes: Figure shows results of regression according to equation 11 for 2012-2013. Import quantities in

1000s of tons. SEs clustered by country. Bars show 95% confidence intervals.
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