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ABSTRACT

Advances in machine learning and the increasing availability of high-dimensional
data have led to the proliferation of social science research that uses the predic-
tions of machine learning models as proxies for measures of human activity or
environmental outcomes. However, prediction errors can lead to bias when es-
timating regression coefficients. In this paper, we show how this bias can arise,
and demonstrate the use of an adversarial machine learning algorithm in order to
debias predictions. These methods are applicable to any setting where machine
learned predictions are the dependent variable in a regression. We conduct sim-
ulations and empirical exercises using ground-truth and satellite data on forest
cover in Africa. Using the predictions from a standard machine learning model
leads to biased parameter estimates, while the predictions from the adversarial
model give precise estimates of the true effects. Finally, we replicate a study of the
effects of artisanal gold mining on deforestation in Africa (Girard, Molina-Millán
and Vic, 2025). We find that after correcting for bias using a novel sample of
hand-labeled points, standard confidence intervals can not rule out a null effect,
even though our confidence intervals are 19% smaller than those obtained using
alternative bias correction methods.
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I. Introduction

Advances in machine learning and the increasing availability of satellite im-

agery and other high-dimensional datasets have led to the proliferation of social

science research that uses the predictions of machine learning models as proxies

for measures of human activity or environmental outcomes. However, when the

machine learning models used to measure these outcomes minimize a standard

loss function, the resulting predictions can produce biased estimates when esti-

mating regression coefficients. If the measurement error in the outcome variable

is correlated with policy variables or important confounders, as is the case for

many widely used remote sensing data sets, estimates of the causal impacts of

interventions will be biased. This bias can occur even in cases when researchers

have a good instrument or an experimental research design.

In this paper, we show how this bias can arise, and we propose a method

to generate unbiased predictions using adversarial debiasing algorithms (Zhang,

Lemoine and Mitchell, 2018). We adapt this procedure from the algorithmic fair-

ness literature, where it was originally developed to ensure that machine learning

algorithms do not encode racial or other undesirable biases for decisions like hir-

ing, admissions, or bail. The method uses a machine learning algorithm with a

modified loss function that ensures that predictions are unbiased with respect to

‘protected characteristics’. We directly borrow their approach show that it has

broad applications to any setting in which researchers are using machine-learned

outcome variables as the dependent variable in regressions.

We demonstrate the usefulness of the approach in the context of satellite derived

measures of deforestation. Previous research has derived measures of economic

output, air pollution, land-use change, and other variables at high resolution

by using algorithms trained on satellite imagery and some ground-truth data

(Henderson, Storeygard and Weil, 2011; Hansen et al., 2013; Meng et al., 2019).
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A typical approach is to train a machine learning model on satellite data using a

limited number of ground-truth observations and then using the model predictions

to impute outcomes for a larger population of interest. These measurements have

been widely used as a dependent variable in regressions to estimate the effects

of various policies on deforestation, GDP, pollution, and other variables (see e.g.

Burgess et al. 2012; Alix-Garcia et al. 2013; Meng et al. 2019; Asher, Garg and

Novosad 2020; Wren-Lewis, Becerra-Valbuena and Houngbedji 2020; Slough 2021;

Sanford 2021; Jack et al. 2022). For example, the Hansen et al. (2013) estimates

of deforestation have been cited more than 10,000 times.

While machine learning models can obtain high accuracy, there are widely doc-

umented biases in the predictions that can pose problems when they are used in

regressions. Tropek et al. (2014) showed that the Hansen et al. (2013) predic-

tions confuse tree plantations for forests, for example. Various biases have been

shown to exist in satellite measures of air pollution and economic activity as well

Fowlie, Rubin and Walker (2019); Bluhm and McCord (2022). Although often

ignored in early applications, this non-classical measurement error can violate the

assumptions that are required for consistent estimation of regression coefficients.

We show analytically and intuitively why this can be a problem, starting with

the well-known result that the bias in a regression coefficient depends on the

covariance between the covariate and the machine learning model’s prediction

error. Crucially, this bias can occur even in a randomized control trial or quasi-

experimental setting where standard assumptions for causal identification typi-

cally hold, since treatment can induce differential measurement error. We give a

number of examples of how this can occur in practice.

Given the formula for the bias of a regression coefficient, a simple test for bias

is to regress prediction errors on the independent variables of interest using a

subsample of ground-truth data. This test can also be used to ‘correct’ regression

3



coefficients estimated using the full sample, a technique known as prediction-

powered inference (PPI), or predict-then-debias (PTD) (Angelopoulos et al., 2023;

Kluger et al., 2025). A power analysis of the regression can be used to determine

how many observations researchers would need to label to detect bias of a given

size. In many cases, researchers may be able to collect this ground-truth data by

visually interpreting high-resolution imagery.

Our primary contribution is to then demonstrate how the use of machine learn-

ing models with modified loss functions can eliminate biases in coefficient esti-

mates. Intuitively adversarial debiasing can be understood as follows — a primary

model attempts to minimize prediction error for the outcome of interest. The mea-

surement errors are then passed to a secondary model (the adversary), that tries

to predict the treatment status of an observation. When tuning the first model,

a penalty term is added to the loss function that increases if the adversary’s pre-

dictions improve. Thus the primary model attempts to minimize prediction error

while also making errors uninformative about treatment status. In the special

case where the adversary is a linear regression of prediction errors on regression

covariates, we show that this loss function penalizes the covariance between pre-

diction errors and the treatment variable. This can reduce or eliminate biases in

regression coefficients estimated using these predictions.

We then demonstrate the effectiveness of these approaches by applying them

to measurements of forest loss in Africa. We conduct simulations and a sim-

ple descriptive exercise to measure the cross-sectional relationship between forest

cover and distance to the nearest road, using ground-truth data on forest cover

(Bastin, 2017). In our simulations, the adversarial debiasing approach allows us

to estimate the true parameter without requiring any knowledge of the sources

of prediction error, while standard machine learning model predictions lead to

biased estimates.
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We then turn to a setting with a causal research design, replicating a study of

the effects of artisanal gold-mining on deforestation Girard, Molina-Millán and

Vic (2025). Given the previously found tradeoffs between human health and eco-

logical outcomes (Benshaul-Tolonen, 2019), careful measurement is critical in this

context. Unfortunately there are not good publicly available sources of labeled

forest data that show changes over time. We therefore generate a novel dataset

of ground-truth deforestation data in Africa using optimal sampling methods to

improve efficiency (Neyman, 1934; Gordon and Papp, Forthcoming; Zrnic and

Candès, 2024). Using this data to correct for biases enlarges the confidence inter-

vals in Girard, Molina-Millán and Vic (2025). Ultimately, we cannot rule out a

null effect, though the confidence intervals produced using the debiased model are

19% shorter than those produce using the prediction-powered-inference method

(Kluger et al., 2025).

This paper contributes to a growing literature that has begun to document the

problem of non-random measurement error in machine-learning models (see Jain

2020 for a review1). A number of new papers propose econometric estimators that

can correct for the non-classical measurement error in some cases (Zhang, 2021;

Fong and Grimmer, 2021; Ratledge et al., 2021; Proctor, Carleton and Sum, 2023;

Angelopoulos et al., 2023; Torchiana et al., 2023; Kluger et al., 2025; Rambachan,

Singh and Viviano, 2025; Carlson and Dell, 2025). Most of these methods use

a subset of data where the ground-truth is known to debias predictions2. Our

method has two key advantages: 1) unlike some of the above methods, we require

no assumptions about sources of bias or functional forms beyond those standard

for causal inference, and 2) rather than correcting a biased set of predictions,

we show how to generate predictions without biases. While more demanding,

1For topic specific reviews, see Balboni et al. 2022 on deforestation, Gibson et al. 2021 and Bluhm
and McCord 2022 on night lights, and Fowlie, Rubin and Walker 2019 on air pollution.

2Torchiana et al. (2023) is an exception, they make assumptions about the data generating process
that avoid the need for labeled data.
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in that it requires researchers build a custom machine-learning model for any

given analysis, this method is widely applicable, and it also improves efficiency

in many of our experiments. We show the conditions under which predictions

from a debiased model will result in smaller confidence intervals than alternative

methods.

The ability to build customized machine learning models for outcomes of in-

terest may become increasingly important as researchers learn more about the

shortcomings of off-the-shelf remotely sensed data products in certain contexts.

Our results show that very simple machine learning models can be sufficient to

obtain consistent parameter estimates, as long as the prediction errors are bal-

anced with respect to the policy variable. While we are not the first to customize

machine learning predictions for use in social science research (Ratledge et al.,

2021), our adversarial approach is both simpler and more general, in that it can

be applied to attenuation bias as well as many other types of non-classical mea-

surement errors. Both methods have applicability beyond satellite data. The

same approach can be applied to machine learning predictions on text data, such

patents or tweets for example.

Finally, we build connections between previous work on machine learning mea-

surement error described above, and the literature on algorithmic bias and adver-

sarial debiasing (Kleinberg, Mullainathan and Raghavan, 2016; Zhang, Lemoine

and Mitchell, 2018; Kleinberg et al., 2018; Kim et al., 2022; Liang, Lu and Mu,

2023; Arnold, Dobbie and Hull, 2024). We directly adapt some of the results re-

garding algorithmic bias in decision making to solve a common estimation prob-

lem. Closely related to our work Chernozhukov et al. (2020) studied the use of an

adversarial model to debiased estimates of heterogeneous treatment effects, when

the treatment effect is modeled as a function of observables. Our paper shows

how to use an adversarial model to debias measurement error in an outcome vari-
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able that is not observed, but can be predicted as a function of observables. The

resulting predictions can then be used to estimate treatment effects.

In the next section, we present an analytical framework that shows why machine

learned predictions can result in biased estimates of regression coefficients, and

we show how bias correction approaches and adversarial debiasing can solve these

problems. In section III we show that the methods work with simulated data

and in a simple cross-sectional descriptive regression to recover the relationship

between roads and forest cover. In IV we apply these methods to a time-series,

causal application: the effect of a gold mining on deforestation in Africa.

II. Framework

To fix ideas, consider a regression with one independent variable X3. We seek

to estimate the relationship between changes in X and an outcome Y according

to the linear model:

(1) Yi = α+ βXi + ei.

In this case, our parameter of interest is β, the marginal effect of X on Y .

However we do not have access to the true Yi for all observations. Instead we

have predictions Ŷi from a machine learning model that generates predictions

Ŷi = Yi + νi, where νi is the measurement error for a given observation.

These predictions are generated based on a subset of the data for which the

true values of Yi are known. Let j ∈ J index observations in this labeled data.

While a researcher could estimate equation (1) using only labeled data, using the

predictions from the unlabeled data can add power (Proctor, Carleton and Sum,

2023; Carlson and Dell, 2025).

The predictions in the unlabeled data are generated as Ŷi = f(ki, ω), where

3This section presents an expanded and refined version of the ideas in Sanford et al. (2025)
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ki are some predictors of Yi that are observed for all i. Model weights ω are

chosen by minimizing some function of νj , for example, the sum of squared errors:∑
j ν

2
j =

∑
j(Ŷj(kj , ω)− Yj)

2.

While this may be a sensible approach for minimizing prediction errors, it can

generate bias when Ŷ is used as a proxy for Y in policy evaluation. When we

estimate β from (1) using OLS with Ŷi as the dependent variable instead of Yi,

our estimate of β will equal in expectation:

(2) E[β̂] = β +
Cov(e,X)

V ar(X)
+

Cov(ν,X)

V ar(X)
.

The middle term in the equation is standard endogeneity bias, and must equal

zero in expectation to estimate the true parameter without bias. For what follows,

we ignore this source of potential bias as it is not the focus of our analysis. The

third term is the result of using machine learned proxies for Yi instead of the true

values, and is the focus of this paper. In words, the measurement error from our

machine learning model will bias our estimate if it is correlated with the treatment

variable.

This situation can arise in several ways. First, measurement error can be cor-

related with the true values, Yi. Fowlie, Rubin and Walker (2019) show this type

of measurement error in satellite derived estimates of air pollution. The satellite

measures show attenuation bias at higher concentrations, underestimating true

concentrations. This is depicted in a Directed-Acyclic-Graph (DAG) in Figure

1.b, which we have called outcome-induced bias. In this case, we can model the

measurement error as a function of Yi plus an idiosyncratic component ϵi:

νi = g(Yi) + ϵi(3)

νi = g(βXi + ei) + ϵi.
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Figure 1. : Four Directed-Acyclic-Graphs illustrating potential relationships be-
tween treatment (X), outcomes (Y ), measurement error (ν), machine learning

model predictions (Ŷ ), and unobserved variables (W ). (a) is classical measure-
ment error, (b) shows outcome-induced bias, (c) shows confounder-induced bias,
and (d) shows treatment-induced bias.

Thus, when g(βXi + ei) covaries with respect to Xi, β̂ may be biased, even in

an RCT setting where Cov(e,X) = 0. Intuitively, if Ŷ doesn’t change over some

domain of the ground truth variable, estimates of the treatment effect cannot

learn about effects in that part of the distribution of Y . Another example of this

type of measurement error occurs when Y is binary, since in this case, errors are

always negatively correlated with the true value of Y (Aigner, 1973).

Alternatively, assume measurement error is a function of some other variable

Wi that is correlated with both treatment and outcomes, and some idiosyncratic

component. For example, if we want to estimate the effect of a payment-for-

ecosystem-services program on deforestation, some unobserved W (e.g. soil mois-

ture) might both affect the probability that a parcel is enrolled in the program

and cause forest cover to be over-estimated because of the increased ambient veg-
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etation — in other words there is selection into treatment that is correlated with

measurement error. See Figure 1.c for a graphical representation. In this case,

measurement error can be modelled as a function of W :

(4) νi = g(Wi) + ϵi.

If Cov(X, g(W )) ̸= 0, again our estimates will be biased. Note W does not

operate like a traditional confounder here, in that it does not affect the true

values of Y , except through it’s effect on X. It only affects Ŷ through its effect

on ν.

Finally, in certain cases, treatment can induce measurement error. For example,

take a researcher studying the effects of a cash transfer program on deforestation.

The treatment causes recipients to invest in irrigation and high-yielding crops,

which may be more often confused for forests than the previous landcover. This

would result in overestimation of the post-treatment forest cover for the treated

group. We refer to this as treatment-induced bias. See Figure 1.d for a graphical

representation.

These examples show that even if researchers have an experimental or quasi-

experimental source of exogenous variation, estimates may still be biased when

the dependent variable contains prediction error. Instrumental variables can be

useful for measurement error in X. Even a valid and relevant instrument will not

guarantee an unbiased estimate when Ŷ contains measurement error, however.

A. Biased Predictions: Why do they occur?

If measurement error is systematic with respect to treatment, as in the cases

described above, this raises the question of why the machine learning model didn’t

generate better measurements in the first place? Fong and Tyler (2021) claim

that these types of errors are unlikely to occur with machine learning, since if the
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measurement error correlates with X, it does so at the expense of predicting Y .

Despite this claim, biased measurements can arise for several reasons.

As described above, machine learning models are typically trained by choosing

a set of model parameters, ω, that minimize a loss function in a training data set.

When choosing ω, a more complex model will better fit the training data, however,

out of sample predictions will have greater variance. On the other hand, a simple

model may be right on average, but biased in certain regions of the feature space.

Navigating this bias-variance tradeoff is at the core of modern machine learning

methods.

As a result, bias can arise for at least two reasons. First, limited or unrep-

resentative training data means that certain regions of the feature space can be

given less weight in the training process. Similarly, if data in certain parts of the

feature space contains less information about the target variable of interest, then

that will have less influence on the ω. This could occur if some of the data is of

poorer resolution, for example. Liang, Lu and Mu (2023) formalize these ideas,

showing that unless an algorithm’s inputs satisfy a particular type of balance, the

algorithm faces a tradeoff between accuracy and fairness (equivalent to unbiased-

ness in our context). In some cases they show that adding the group variable (or

treatment variable X in our case) can even increase biases in predictions.

B. Detecting and Correcting Bias

Unlike for omitted variable bias, an estimate of measurement error bias is di-

rectly obtainable if researchers have access to or can generate some ground-truth

values of Y . This is the approach followed by the prediction-powered inference lit-

erature (Angelopoulos et al., 2023) and the predict-then-debias methods (Kluger

et al., 2025). Consider the regression:

(5) νj = γXJ + uj ,
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with X as a vector of independent variables, and νj = Ŷ − Y is the prediction

error. Our estimate of γ will be γ̂ = (X ′X)−1X ′ν. This is exactly the multivariate

analog of the bias term in equation 2. This shows that a very simple regression

coefficient can be used to estimate bias, under the assumption that the labeled

set is representative of the population of interest.

In practice, researchers may be able to obtain a number of such labels by vi-

sually interpreting high-resolution satellite imagery, for example. In this case,

it should be easy to make sure that J is representative of the broader popula-

tion, in which case the estimator is consistent. In cases where the labelled data

suffers from selection bias or is non-representative in some other way, selection

on observables techniques using the machine learning model inputs (k) may be

a promising approach (Imbens, 2004; Carlson and Dell, 2025; Rambachan, Singh

and Viviano, 2025). Estimates of the standard errors of γ̂ can be used to test

whether the bias is significantly different from zero, or to rule out biases greater

than a certain size, though standard errors may need to be adjusted for spatial

or serial correlation.

It is also simple to adapt standard power calculations to estimate a ‘minimum

detectable bias’ given a certain number of observations, and an estimate of the

standard error of γ. Researchers can then estimate the number of labeled obser-

vations which will likely be necessary to rule out some amount of measurement

error bias. We demonstrate this procedure in our applications.

Estimating the bias in this way can be a useful diagnostic, but it can also be

used to perform a ‘bias correction’ on estimates of β̂ from equation (2). This bias

correction, first shown by Angelopoulos et al. (2023), is:

(6) β̂c = β̂ − γ̂.

In expectation, β̂c is a consistent estimator for β when the labeled sample
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is representative. An estimate of the standard error of β̂c can be produced by

a normal approximation as described in Angelopoulos et al. (2023) and Kluger

et al. (2025) or with a bootstrap procedure. Note that β̂ is estimated using all of

the points, while γ̂ is estimated only using the labeled points.

The advantage of this approach is its relative simplicity. It can be implemented

with off-the-shelf predictions and a small amount of labeled data, as long as the

labeled data is representative. There are some shortcomings of this estimator,

however. The estimation uncertainty around γ̂ inflates the standard errors around

β̂c. Furthermore, this approach takes a set of Ŷ predictions as given. The joint

distributions of Ŷ , Y , and X potentially limit the precision of β̂c. In the next

section, we describe how to obtain better predictions of Ŷ for a given estimation

problem.

C. Adversarial Debiasing

Recall that the machine learning model predictions are a function of k, input

features, and ω, model weights, that are chosen to minimize some loss function.

If the model is a linear regression, for example, then the model weights are the

regression coefficients. Given the potential bias from prediction errors in equation

(2), we can formulate the model’s objective function as a constrained optimiza-

tion problem. In particular, we seek a model that directly avoids differential

measurement error by construction with parameters ω∗ that satisfy:

(7)
ω∗ = argmin

ω
Lp(Ŷ (ω), Y, k)

such that Cov(X,Y − Ŷ (ω)) = 0.

where Lp is a standard loss function, such as mean squared error. The constraint

on the loss function ensures that the measurement errors will not be biased with

respect to X.
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This objective function is nearly isomorphic to that of the adversarial debiasing

approach proposed by Zhang, Lemoine and Mitchell (2018), which was proposed

as a way to debias machine learning model predictions with respect to race or

gender. Zhang, Lemoine and Mitchell (2018) introduce a secondary model, called

the adversary, with model weights γ and loss function La(X̂(γ), X, Y, Ŷ (ω)). The

adversary chooses γ to try to predict a ‘protected‘ variable using the measurement

errors from the primary model. In Zhang, Lemoine and Mitchell (2018), the

protected variable is race or gender; in our setup, the protected variable is X, an

observation’s treatment status.

An adversarial debiasing model is trained to minimize Lp, while maximizing La,

subject to the adversary choosing γ in such a way as to minimize La. Formally,

this can be written as:

(8)
min
ω

max
γ

{
Lp

(
Ŷ (ω), Y, k

)
− α · La

(
X, X̂ (γ) , Y, Ŷ (ω), k

)}
such that γ ∈ argmin La(X,Y, Ŷ (ω), γ, k)

where α is a researcher-specified parameter that controls the weight on the

adversary’s loss function, and must be tuned (e.g. by cross fitting). Intuitively,

by maximizing the adversary’s loss function, the primary model tries to make

sure that the measurement errors contain as little ‘information’ as possible about

X. When linear regression is used as the downstream estimation model, we are

specifically concerned with ‘information’ in the form of the covariance between X

and ν. Now consider an adversary model that is a linear model of the exact form

of the bias test above in equation (5). The adversary loss function is the mean

squared prediction error:

La =
1

N

∑
j

(νj − γXj)
2.
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The loss function is of this adversary is minimized with respect to γ when

γ = (X ′X)−1X ′ν, which is exactly the bias in equation (2). The primary model

will try to choose ω such that the prediction errors maximize the adversary’s loss

function.

Consider prediction errors at step t and t+ 1 of training: νt and νt+1. Holding

accuracy of the primary model predictions constant, moving in the opposite di-

rection of the adversarial loss gradient means |γt+1| < |γt| (Proof in Appendix A).

This can easily be applied to versions of equation (1) control variables or instru-

mental variables as well by using the Frisch-Waugh-Lovell theorem (see details in

Appendix B).

Furthermore, this is exactly isomorphic to the constrained optimization prob-

lem in equation (7), if α is equal to the Lagrangian multiplier on the equality

constraint. In practice, training a model with a constraint on the loss function

can be difficult, which is why Zhang, Lemoine and Mitchell (2018) preferred a

user specified α, chosen by cross fitting.

In practice, we find a similar approach that balances prediction accuracy with

approximating the constraint in equation (7) is to penalize the covariance of X

and ν directly in the loss function:

(9) min
ω

Lp(Ŷ (ω), Y, k)− α
∣∣∣∑

j

(xj − x̄j)νj

∣∣∣.
For all methods, the choice of α is important. With too low of an α the

model does not effectively debias the results, minimizing squared prediction error

instead of maximizing the adversarial loss. However, when α is too high the

model may produce random measurements to inflate the adversary’s loss. While

ideally α would be the Lagrangian multiplier on the constraint in equation (7),

the typical approach is to use cross fitting within the labelled data, such that
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overall prediction error and bias can be examined for different choices of α.

One downside of the approach detailed here is that it requires a unique ma-

chine learning model for each downstream estimation task. This suggests that,

for example, measuring tree cover to estimate the effect of property rights on de-

forestation is different from measuring tree cover to estimate the effect of wealth

shocks on deforestation. While this may be taxing for researchers, it also suggests

that failing to build a measurement strategy for any individual task risks biasing

that task.

Furthermore, Zhang, Lemoine and Mitchell (2018), show that the adversary is

only guaranteed to produced unbiased measurements under strong assumptions

on the loss function. Therefore in practice we recommend combining adversarial

debiasing with a post-prediction method of debiasing, e.g. Angelopoulos et al.

(2023) or Kluger et al. (2025).

For the researchers that are willing to build these models, adversarial debiasing

has a few advantages. It does not require a researcher to know the source of the

measurement error – the debiasing procedure will eliminate differential measure-

ment error without specifying the precise source. Secondly, researchers may be

able to use more sophisticated adversaries than a linear regression, for example,

modeling ν non-parametrically as a function of both X and k. This may improve

out-of-sample performance when representative training data is unavailable.

Secondly, adversarial debiasing may allow researchers to achieve unbiased esti-

mates of treatment effects using very simple machine learning models. State of

the art models that aim to maximize accuracy can be computationally demand-

ing especially when used over large areas. In our examples below, we are able to

recover accurate treatment effects using simple models that train in seconds on a

standard CPU.

Finally, as we discuss in the next section, the main advantage of this approach
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is that it may improve the precision of estimates of β in equation (1).

Inference and Efficiency

Call ŶD the predictions of a model trained using one of the adversarial ap-

proaches outlined in Section II.C, νD the corresponding prediction errors, and β̂D

the estimate of β using these predictions as a proxy for Y in equation (1). We

wish to show under what conditions is Var(β̂D) < Var(β̂C), the variance of the

predict-then-debias estimator.

Recall e are the structural errors in equation (1), ν are the prediction errors from

the standard machine learning model which can be decomposed into a systematic

bias term γX, and a residual u that is uncorrelated with X by construction.

Given these definitions, the variance of β̂D will be:

Var(β̂D) = Var
(
(X ′X)−1X ′ŶD

)
(10)

= (X ′X)−1X ′E[ee′]X(X ′X)−1 + (X ′X)−1X ′E[νDν ′D]X(X ′X)−1

+ 2(X ′X)−1X ′E[eν ′D]X(X ′X)−1

In contrast, the variance of the predict-then-debias estimator from equation (6)

is:

Var(β̂c) = Var
(
β̂ − γ̂

)
(11)

= (X ′X)−1X ′ (E[ee′] + E[νν ′] + 2E[eν ′]
)
X(X ′X)−1+

(X ′
JXJ)

−1X ′
JE[uu′]XJ(X

′
JXJ)

−1 − 2(X ′X)−1X ′E[eu′]XJ(X
′
JXJ)

−1

− 2(X ′X)−1X ′E[νu′]XJ(X
′
JXJ)

−1

where XJ is the matrix of covariates for the labeled points, with zeros in rows

corresponding to unlabeled points. Thus it contains a subset of the rows of X.
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While it could be possible that the structural errors e are correlated with the

prediction error residuals u, such that E[eu′] ̸= 0 and E[eν ′D] ̸= 0, in the case where

X is exogenously assigned, we believe these terms are likely small in practice and

dominated by the other sources of error. Assuming one is likely not much greater

than the other, we ignore them. Conditional on that assumption, and that J is

a representative subset of the population, we can plug in equation (5) for ν and

simplify to see that Var(β̂D) < Var(β̂C) ⇐⇒ :

(X ′X)−1X ′E[νDν ′D]X(X ′X)−1 < (X ′X)−1X ′E[uu′]X(X ′X)−1(12)

+
[
(X ′

JXJ)
−1X ′

J − 2(X ′X)−1X ′]E[uu′]XJ(X
′
JXJ)

−1

We can make a few observations. All else equal, more accurate predictions will

result in smaller standard errors for either estimator. We should generally expect

E[νDν ′D] > E[uu′], given that u comes from a model that is minimized with no

constraints. This is not always the case in practice, however, as we will see in the

following section.

Secondly, XJ is a subset of the rows of X. When X is univariate, (X ′X)−1 =

1/
∑

iX
2
i , which is strictly less than (X ′

JXJ)
−1 = 1/

∑
j X

2
j . Thus when the la-

beled set is small relative to the total sample, we expect the second term on the

right hand side to be large and positive. This second term represents the addi-

tional variance coming from the fact that the bias in the predictions is estimated

using a small sample. Note that when XJ = X, the whole RHS of this inequality

collapses to zero, the only remaining source of variance in β̂C comes from the

structural error e. This makes sense, since in that case we observe the true values

of Y for the whole population.

We can use the typical OLS standard errors or heteroskedasticity-consistent

standard errors to estimate the variance of β̂ and β̂D under-sampling uncertainty
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after making predictions. However, this practice implicitly assumes that the ma-

chine learning model’s predictions are fixed — it doesn’t take into account un-

certainty from the prediction model itself. In essence ω (and γ in the adversarial

models) can be considered random variables that might have a different realiza-

tion if our training data came from a different sample. This would lead to a

different set of prediction errors, and a different estimate of β̂.

Most studies using machine-learning measurements as outcome variables do

not account for this type of model uncertainty in their standard errors. One

approach to correct for this uncertainty is to bootstrap the entire estimation

procedure, including training of the machine learning model, drawing different

samples from the training set to train the model, and then to estimate of β. This

approach is computationally intensive, since it requires bootstrapping the training

of a potentially complex machine learning model, however, our simulations show

that it can be important in practice.

Lastly, Kluger et al. (2025) show that a convex combination of the coefficient

generated using the predicted values, and an estimate of the coefficient based on

only the true values of Y estimated in the labeled ground-truth data can reduce

the variance of the resulting estimate. We use their ‘tuning’ procedure to obtain

all of our estimates in our applications.

In the sections that follow, we use hand-labeled datasets of forest cover in Africa

to explore the biases generated by machine learning measurement error. We start

with a simulation study of the cross-sectional relationship between roads and for-

est cover, and then estimate the relationship with real data. In section IV, we

apply the above techniques to panel data to determine how important these con-

siderations are in a setting with a causal research design. We use these methods

to replicate the Girard, Molina-Millán and Vic (2025) study of the African gold

mining boom on local forest cover.
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III. Cross Sectional Simulations: Roads and Deforestation

To demonstrate the efficacy of our approach, we conduct simulations and em-

pirical exercises on a common remotely-sensed outcome – forest cover – in settings

where we also have access to ground truth data. For our first application, we use

a hand-labeled dataset of 20,621 points in West Africa (Bastin, 2017) that are

labeled with their percent tree cover as our “true” measures of forest cover. This

data is a cross-sectional sample of points from a grid covering an enormous region

of dryland forest across much of West Africa. This data was collected in part to

show the biases of the Hansen et al. (2013) data in dryland areas. Researchers

used high-resolution imagery from 2011-2015 to label the data. We use a sample

of the data in West Africa within 30 km of a road and 100 km of a DHS cluster

(see Figure 2 for the study area and an example of how the data was labeled).

As inputs to our machine learning models, we use data from the Landsat 7 ETM

sensor. This sensor records the surface reflectance of light at several visible, near-

infrared, and infrared wavelengths (called ‘bands’ in the remote sensing literature)

at a 30-meter resolution. We generate three popular indices from these bands:

Normalized Differenced Vegetation Index, Normalized Differenced Built Index,

and Enhanced Vegetation Index. Over the course of a year, each location is

observed up to 28 times (cloudiness obscures locations in some areas at some

times). We take the 25th, 50th and 75th percentiles of each of the first five bands

and three indices, and use those 24 variables as inputs. This feature-engineering

strategy mirrors the approach in Hansen et al. (2013). With a simple 1-layer

neural network (a logistic regression) we are able to predict forest cover using

these variables with 75% accuracy.
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Figure 2. : Colored areas on the map show labeled pixels from Bastin (2017) —
green for forested and beige for non-forested. Inset shows an example of how
percent forested labels were generated from high-resolution satellite data.

A. Simulation

All of the following empirical exercises take the following structure. First, we

divide the data into three equal folds. We train a model on two folds, and predict

on the third for each of the folds so that we have a ground-truth value of Y and

a prediction Ŷ for each point.

Then we repeat the procedure with a model with the same structure, but adding

the constraint in equation (9). Finally, we estimate our regression of interest using

the ground truth data, the baseline predictions, and adversarial model predictions.
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We also test alternative bias correction methods, including multiple imputation

(Proctor, Carleton and Sum, 2023), the tuned predict-then-debias (PTD) method

(Kluger et al., 2025), prediction-powered inference (Angelopoulos et al., 2023),

and PostPI (Wang, McCormick and Leek, 2020). For all approaches, we bootstrap

standard errors than include the uncertainty from model training.

The regression of interest is the cross-sectional relationship between roads and

forest cover. Previous work has found that roads are an important driver of

deforestation (Asher, Garg and Novosad, 2020). Roads and other infrastructure

are non-randomly placed, so this cross sectional relationship is likely to generate

confounder-induced bias (Figure 1.c). Consider X to be the presence of a road,

Y to be forest cover, and W to be some omitted geographic variable, like slope,

that influences both measurement errors and the placement of roads.

Our first simulation follows this procedure:

1) Draw 20,000 observations of W from a Poisson distribution with shape

parameter of 1.

2) Assign each observation X ∼ Bernoulli with p = max(1 −W/4, 0), so that

treatment is more likely when W is lower.

3) Assign each observation a random forest cover Y and associated satellite

data k from the Bastin points.

4) If W > 0, make the satellite data artifically ‘greener’ without changing

the label. In practice this is done by replacing the satellite data with the

satellite data from a different point with a higher percent forest cover.

5) We then train both a standard and debiased model on this simulated data

as described above, and then we estimate a regression using the model’s

predictions as dependent variables.

22



The true treatment effect of X is zero, since the forest labels Y are assigned

randomly. However, the last step mimics a real source of bias — remotely sensed

forest cover tends to be overestimated on steeper slopes since images are taken

from above and tend to capture more trees in a smaller spatial area when on a

slope. Because of this bias, and selection into treatment, it will appear that roads

are associated with lower forest cover. Note also that there are no “traditional”

confounders in this simulation — nothing is associated with both road proximity

and true forest cover.

Figure 3 shows the distribution of coefficient estimates from 100 bootstrapped

runs of each of the models with α = 1 and regressions using 10,000 training points

and 10,000 unlabeled points. As predicted, using the baseline machine learning

model results in a negative and significant estimate of the effect of X on Y .

Both the bias correction methods and the adversarial model result in coefficient

distributions correctly centered around 0.

The performance of all of these methods likely depends on the sample size of

labeled points. Given this, we also run each of the models using a progressively

increasing sample of labeled point. For each given sample size J , we use the J

labels to train the model, and then predict on the remaining points so that the

sample size for the regression is always N = 20, 000. For each J we bootstrap 100

different versions of the model to estimate standard errors.

Figure 4 shows the results of this exercise. The baseline model generates biased

estimates of the relationship between roads and forest cover across all sample

sizes. The other methods, aside from PostPI, are centered on β = 0, and precision

increases as the sample size of labeled points increases.

In this setting, PPI and PTD perform best. This situation is a difficult case

for the adversarial debiasing method because the satellite data contains no infor-

mation about the source of the bias, since it has been replaced by imagery from
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Figure 3. : Simulation experiment estimated distributions from our proposed
adversarial model (“Adversarial Tuned”), a baseline neural network model, and
alternative bias correction methods, each trained with 10,000 labeled observa-
tions. Each distribution shows the coefficients from each model after 100 runs on
bootstrapped training data.

randomly drawn pixels with higher forest cover. This requires the adversarial

model to sacrifice accuracy in predicting the low W , high Y observations so that

the measurement error is balanced across X. Note that the adversary never has

access to W , yet is still able to adjust for W -induced measurement error. In real-

world cases, the adversarial model may be able to outperform the PTD and PPI

methods by learning measurable representations that predict bias and adjusting

for them.

Finally, we conduct a power analyses of the bias test in equation (5) to estimate

the minimum detectable bias (MDB) at different sample sizes. This could be

crucial for a researcher using an off-the-shelf satellite data source deciding how

24



Figure 4. : Estimates from our proposed adversarial model (“Adversarial Tuned”),
a baseline neural network model, and competing methods across training sample
sizes. Each light colored line is an individual training run where researchers
label progressively more observations. The thick lines represent the mean and 2σ
intervals.

many points to label in order to rule out large biases in their estimates. The

results are presented in Figure 5. Each line represents a different random draw

of J labeled points. At each sample size, for each set of points, we estimate the

standard error of γ and use that to perform a standard power calculation using

0.8 power and 95% statistical significance. Given that the true magnitude of the

bias is 0.025 in this simulation, researchers would need to label more than 2,500

points to detect this bias as statistically different from zero 80% of the time.
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Figure 5. : Minimum detectable bias (MDB) estimates across sample sizes at
power of 0.8 and α = 0.05. Each black line represents an estimate of MDB using
a different random sample of labeled data, and the red line is the true MDB using
standard errors estimated with the whole dataset.

B. Descriptive Exercise: Roads and Forest Cover

Next we use the true Bastin (2017) data, and data on the African road network

from Meijer et al. (2018), to estimate the gradient of forest cover with respect to

distance to the nearest road. Whereas before the independent variable was binary

and the outcome was continuous, now our independent variable is continuous, log

distance to the nearest road, and our outcome is binary (forested or not). We

apply the same cross-fitting procedure as above for both a standard model and

an adversarial model using a 3-layer neural network that gives then estimated

probability of forest cover as output. We then run the same regressions as in

Section III.A. The results are shown in Figure 6.

In this real-world setting with non-manipulated satellite data, we see that the

standard machine-learning model overestimates the negative relationship between

proximity to roads and forest cover. Clearly, there are omitted variables in this
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Figure 6. : Distributions of estimated effects of roads on forest cover from our pro-
posed adversarial model (“Adversarial Tuned”), a baseline neural network model,
and alternative methods, each trained with 10,000 labeled observations. Each
distribution shows coefficients from each model after 100 runs on bootstrapped
training data. The dashed vertical line represents the “true” estimate using all
20,000 ground truth labels.

context – topography, aridity, and others – that influence both the prediction

errors and the location of roads. Once again, however, the adversarial model

and some of the other proposed bias correction methods, including PTD and

PPI, are able to generate measurements that recover accurate estimates without

any knowledge of these omitted variables. The multiple imputation and PostPI

methods reduce bias compared to the baseline machine learning model, but do

not perform as well as the other methods. Furthermore, the estimates using the

adversarial model have the greatest precision of all methods, though the PTD

method is comparable.

In Figure 7 we plot the mean measurement error at each decile of distance

from a road for both the adversarial model and the standard model. While the

average error for both models is close to zero, the standard model exhibits a strong

27



measurement error-distance gradient that results in the biases in the coefficient

estimates. The positive prediction error at close distances indicates the model is

more likely to generate false positives (i.e., predict forest where there is no forest)

close to roads, and the negative mean prediction error at far distances indicates

the model tends to generate more false negatives at that distance. In contrast, the

mean error is close to zero at every decile of distance for the adversarial model,

indicating a balance of false positives and false negatives at all deciles of distance.

Figure 7. : Measurement error across deciles of distance to road

We also use this setting to run experiments on the α parameter: the weight

on the adversary in the loss function. The results are summarized in Figure 8

for two different model architectures: a logistic regression and a deep neural net

(DNN). The left column shows that, for both models, increasing the weight on

the adversary from zero (standard model) to 1 quickly eliminates bias in the

estimated coefficients.

Naively, we might think that this increasing weight would come at the cost of

predictive accuracy, as described in the simulation, since an unconstrained model

should be able to minimize MSE at least as well as a constrained model. This

seems to be the case for logistic regression, which shows a trend towards higher
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mean-squared error on predictions as the adversary’s weight increases. For the

DNN, however, increasing the adversary’s weight actually improves prediction

accuracy. This result can be understood as a kind of regularization effect. In

some settings with many model parameters, for example when using LASSO with

many features, it is well known that a regularization penalty can reduce overfitting

and improve out-of-sample prediction performance (Tibshirani, 1996). While it is

difficult to say precisely when adversarial models will improve prediction accuracy,

it seems to have done so in this example.

(a) Bias: Logistic Regression Pri-
mary Model

(b) Accuracy: Logistic Regression
Primary Model

(c) Bias: DNN Primary Model (d) Accuracy: DNN Primary Model

Figure 8. : Tuning alpha: Tradeoffs between bias and accuracy. Graphs show
how coefficient bias (left column) and overall predictive accuracy (MSE - right
column) change as the weight on the adversary increases. Top row shows results
for a primary model that is a logistic regression. Bottom row shows results for
a Deep Neural Net (DNN - 3 layers). Blue lines show Loess smoothed best fit
curves.

This application demonstrates that estimates of a simple descriptive relation-

ship can be biased by measurement error. These biases can be mitigated by
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incorporating an adversarial debiaser into the model, however, potentially with

greater precision compared to other proposed debiasing methods. In the follow-

ing section, we study whether these methods remain important to study causal

relationships using a research design that can rule out many possible confounders.

IV. Artisanal Gold Mining and Deforestation

We now turn to a causal relationship of interest - the effect of artisanal gold

mining on deforestation in Africa. We conduct a replication analysis of Girard,

Molina-Millán and Vic (2025), which found large effects of artisanal gold mining

on deforestation in Africa. This is a topic in which precise measurement is im-

portant for policy, due to the sharp tradeoffs between environmental degradation

and economic benefits. In the same paper, Girard, Molina-Millán and Vic (2025)

find substantial impacts of gold price shocks on wealth in gold-suitable regions.

In an earlier analysis, Benshaul-Tolonen (2019) found that increases in mining ac-

tivity reduce infant mortality. At the same time, Africa is the continent with the

highest rates of forest loss. Forest preservation may provide a range of benefits,

including carbon capture and promoting biodiversity.

There are also theoretical mechanisms that push the effect of mining on forest

cover in different directions. While presumably the direct effect of the mines is

to displace some forest, in a context where agricultural expansion is the primary

source of forest loss, it is possible that the indirect effects from the mines could re-

duce deforestation through other channels. Indeed, Foster and Rosenzweig (2003)

find that increased economic growth increased forest cover in India.

A. Data Collection and Estimation Strategy

The main specification in Girard, Molina-Millán and Vic (2025) is:

(13) ̂̄Y cjt = β1Gc × Pt−1 + µc + λjt + ϵct,
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Where ̂̄Y cjt is the sum of predicted deforestation in a 0.5 x 0.5 degree grid cell

c in country j at time t. Gc is a geologic measure of gold-mining suitability in

the grid cell, and Pt−1 is the annual international price of gold. They include grid

cell and country-year fixed effects.

We use the replication package for Girard, Molina-Millán and Vic (2025) which

contains their data on gold-mining suitability and international gold-prices, as well

as their measure of deforestation, which is derived from Hansen et al. (2013)4. In

particular, their dependent variable is the number of predicted deforested pixels

in a grid cell-year, multiplied by 10,000. We replicate their estimates with this

measure, but we also rescale this variable by the approximate number of pixels

in a grid cell5, so that effects can be interpreted as changes in the probability of

a pixel being deforested.

As discussed, the Hansen et al. (2013) deforestation data is based on machine-

learning model predictions about whether a given pixel has been deforested. To

enable us to check these predictions for bias, and also train our own models, we

randomly sample 50,000 pixels from across the continent of Africa. We extract the

Hansen et al. (2013) predictions of deforestation for these pixels, and we also pull

the corresponding Landsat 7 data, and use it to construct the same 24 features

(ki) as in the previous section6.

Ground Truth Data: Optimal Sampling

To debias the Hansen et al. (2013) predictions, we need ground-truth data

on deforestation for a representative sample of points. There is a lack of high-

quality labeled time-series data on deforestation that creates a serious obstacle for

4Technically the Hansen et al. (2013) data measures tree-cover loss, not deforestation. The former
may include tree losses due to natural causes as well as human disturbance. Keeping with the usage in
Girard, Molina-Millán and Vic (2025), we use the terms interchangeably below.

5Given 0.5 degree resolution and 30 meter pixels, this comes out to 3.24 million pixels per cell at the
equator, which we divide by 10,000 to correspond to their measure.

6The annual 25th, 50th, and 75th percentiles of the first five ETM bands, plus NDVI, NDBI, and
EVI.
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this type of research, and unfortunately, Hansen et al. (2013) do not make their

training data publcily available. The Bastin (2017) data utilized in the previous

section is cross-sectional and thus cannot be used for time-series applications. One

source of time-series data is Guo, Zhu and Gong (2022). Their hand-labeled data

tracks a panel of pixels globally from 2000-2020, and crucially, they over sample

areas where they believe forest change has occurred. Unfortunately, they do not

record the sample inclusion probabilities of their observations making it difficult

to determine the representativeness of the sample without further assumptions.

Furthermore, there are only 149 pixels on the continent of Africa in their dataset

that are labeled as having been deforested during this time period, which severely

limits the power of our bias tests and corrections.

To fill this void, we collect our own data on forest change using optimal sampling

methods proposed by Gordon and Papp (Forthcoming) and Zrnic and Candès

(2024). The basic idea is to first train a preliminary machine learning model on

whatever non-representative ground-truth data is available, in our case, we use

the Guo, Zhu and Gong (2022) data, and train a 3-layer LSTM model, which is

a type of neural network that has been shown to work efficiently with time-series

data (Hochreiter and Schmidhuber, 1997). The model takes the entire time series

of features for a pixel, and returns the probability of change in each year.

Next we use this model, which, given the minimal training data, has fairly

low out-of-sample-accuracy and is likely biased, to make a preliminary set of

predictions on our representative sample of unlabeled points. We use these pre-

dictions in combination with Neyman (1934) optimal sampling methods to choose

a representative set of these points to label. We sample points with probability

πi ∝
√

pi(1− pi), where pi is our LSTM model’s predicted probability of defor-

estation for pixel i. This sampling strategy leads us to over sample points that

the model is most uncertain about. The usefulness of this procedure comes from
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the fact that, even if the pi are miscalibrated or biased, we will still end up with

a representative sample (once labeled observations are weighted by 1/πj). Any

biases in the preliminary model thus only affect the efficiency of our resulting

estimates, not the bias.

In order to ensure that we have a sufficiently large sample of labeled points

that undergo deforestation, we perform Neyman (1934) optimal sampling within

two strata: the first contains the points that Hansen et al. (2013) predicts have

been deforested, and the second contains points that are predicted to have no

deforestation. We select 400 points from the predicted deforested points, and

1600 points from the much larger set of predicted no-change points. We then

re-weight our final sample to be representative of the population.

One we have selected our J = 2000 pixels, we need to obtain ground truth

measures of deforestation. For this, we turn to visual interpretation of historical

high-resolution satellite imagery from Google Earth Pro (Google, 2025). For each

point, we have two annotators independently inspect all available imagery, and

mark the first year between 2000-2025 in which deforestation is observed. To

mimic the structure of the Hansen et al. (2013) data, we define a forested pixel

as a having 30% tree cover (vegetation > 5m tall), and deforestation as the loss

of more than half of pre-existing tree-cover. As with their data, we do not record

multiple instances of deforestation in the same location or regrowth.

The quality and frequency of available imagery varies across locations, however

all locations have, at minimum an annual Landsat composite image available

at 30 meter resolution. While not without some difficulty, deforestation can be

estimated at this scale by observing when a pixel in a forested region changes from

dark green to another color — typically a lighter shade of green or brown. Figure

9 below shows a sample of this imagery for a point that has seen deforestation

occur. The top two panels show high-resolution imagery from before and after the
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event, while the lower two panels show the same point using the lower-resolution

Landsat composite. Looking closely, one can see a light-green patch in the bottom

right image corresponding to the deforested area.

(a) High Resolution Imagery: Before (b) High Resolution Imagery: After

(c) Low Resolution Imagery: Before (d) Low Resolution Imagery: After

Figure 9. : Google Earth Pro Imagery of Deforestation

Google Earth Pro historical imagery is used to generate ground-truth data on
deforestation over time. The top two images show a point in the highest

resolution available in 2010 and 2017. The bottom two images show the same
point in the same years using the Landsat annual composite.
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This process unavoidably introduces its own measurement error, especially in

the earlier years of our study period when high-resolution data is less frequently

available. It can be challenging in some cases to determine whether vegetation

is over 5m, forest cover exceeds 30%, and whether half of existing forest cover

is lost. We attempt to mitigate these issues by having a third annotator review

the classification in cases where the first two annotators disagree. Despite its re-

maining shortcomings, we believe this data offers a substantial improvement over

alternative sources of ground-truth data, and should prove valuable to researchers

in stimulating further investigation when bias is detected.

We then use our labeled data to define Hansen et al. (2013) prediction errors

ν, and we merge our labeled and unlabeled points to the grid cell-level data in

Girard, Molina-Millán and Vic (2025). This allows us to estimate estimate a

version of equation (13) with ν as the dependent variable in order to estimate

bias in the causal effect of the gold price shock on deforestation in gold-suitable

grid cells and debias the original estimates using prediction-powered inference. To

compare approaches, we also use our newly labeled data to train a adversarially

debiased machine learning model. We then use the model to make predictions

on the remaining 48,000 unlabeled points and estimate equation (13) with these

predictions as the dependent variable.

B. Results

Overall we find that the Hansen et al. (2013) is generally accurate, however we

find slightly more deforestation. Figure 10 shows a map of our study area. Gold

suitable areas are colored in yellow. We also overlay our labelled points. Note that

our optimal sampling strategy leads us to oversample in the forested regions near

the equator, which is where the most deforestation occurs. In contrast, we sample

relatively fewer points in desert regions, where our model was fairly certain that
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no deforestation had occurred. The points are colored by the Hansen et al. (2013)

prediction errors — there appear to be clear geographic trends. Green points are

false positives, points predicted to have deforestation that were not deforested.

These seem to be concentrated in the most densely forested regions of central

Africa. Red points show false negatives — points that saw deforestation but were

missed by Hansen et al. (2013). These appear to be more common in dryland,

less forested areas, which are also the areas that have seen the most deforestation.

A plausible explanation for these biases is that the Hansen et al. (2013) model is

better at identifying deforestation when a large chunk of previously pristine forest

is cut down, but struggles in regions with lower baseline forest cover. Their model

missing this type of tree loss may also explain why we find more deforestation

overall.

Figure 10. : Prediction Errors in the Hansen Data. Green points are false posi-
tives. Red points are false negatives. Yellow shading shows gold-suitability from
Girard, Molina-Millán and Vic (2025).
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Level effects in prediction error might not be a concern for the time-series

application in Girard, Molina-Millán and Vic (2025). If the amount of prediction

error is uncorrelated with changes in international gold prices, these differences

could be controlled for by their fixed effects. If changes in deforestation generate

prediction errors, however, then we have outcome-induced bias, illustrated in

Figure 1.b.

Table 1 shows the results of our analysis. Column 1 replicates the exact result

from Table 2 in Girard, Molina-Millán and Vic (2025) using the same data and

variables. Column 2 uses the same data, but scales their dependent variable

by the approximate number of pixels in a grid cell to make effects interpretable

as changes in the probability of deforestation. Column 3 estimates the same

regression, but at the pixel level, using our random sample of 50,000 unlabeled

points. The magnitude is quite close to the estimate in Column 2, but slightly

larger, possibly due to our approximation errors in the number of pixels per grid

cell. Standard errors are also a bit larger than in Column 2, but the estimate

remains very precise.

In Column 4, we estimate the same regression, but using measurement error

as the dependent variable. We estimate this regression in the weighted labelled

sample of 20,000 points. The coefficient on treatment, which is an estimate of the

bias on the estimate in Column 3, is not significantly different from 0, but it is

also not very precise, indicating that we cannot rule out large biases. A simple

bias-correction can be performed by subtracting the point estimate in Column 4

from Column 3, which would give a point estimate for the effect on deforestation

of 0.0005, which is 3.6 times lower than the estimate in Column 3. Finally, in

Column 5, we train a debiased LSTM model on the labeled sample, with α chosen

by cross fitting, and find a very precise, but much smaller effect of changes in the

Girard, Molina-Millán and Vic (2025) treatment variable on deforestation. The
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magnitude is reduced by 18 times relative to Column 3.

̂̄Y g Ŷg Ŷi ν Ŷ D
i

(1) (2) (3) (4) (5)

gold suitable × price 0.3033*** 9.362× 10−4*** 0.0018*** 0.0013 1.01× 10−4***
(0.0448) (1.384× 10−4) (4.109× 10−4) (0.0050) (1.77× 10−5)

FE: grid cell X X X X X
FE: yearˆcountry X X X X X
Num.Obs. 192 348 192 348 900 000 36 000 899 442
Kluger et al. (2025) 95% CI [-0.0070, 0.0083] [-0.0049, 0.0080]

Table 1—: Regression results of equation 13. Column 1 replicates an estimate from Table 2 in Girard,
Molina-Millán and Vic (2025). Column 2 uses the same data, but converts the units of the dependent
variable so that coefficients can be interpreted as changes in the probability of deforestation. Column 3
uses Hansen et al. (2013) predictions to estimate the same regression on a sample of 50,000 randomly
chosen pixels. Column 4 estimates biases in the subsample of 2,000 labeled pixels. Column 5 estimates
the same regression using predictions from our model trained using adversarial debiasing. Column 5
drops a few observations that are missing satellite data. All regressions contain grid cell and country-
year fixed effects, and we cluster standard errors by grid cell following Girard, Molina-Millán and Vic
(2025).

Finally, we use the prediction-powered-inference methods from Kluger et al.

(2025) to optimally combine estimates from the ground-truth and predicted data.

When we use the Hansen et al. (2013) predicted deforestation, as in Column 3,

combined with the labeled subsample, we get a point estimate of the coefficient

on the treatment variable of 0.00078 with a 95% confidence interval of [-0.0070,

0.0083]. When we use the same optimal tuning method, but with our debiased

predictions rather than the Hansen et al. (2013) predictions, we get a point es-

timate of 0.00068 with a confidence interval of [-0.0049, 0.0080]. Both point

estimates are close to each other, and both confidence intervals include zero, but

they also include the original point estimate from using the Hansen et al. (2013)

data.

The fact that the estimates in Column 5 are overly precise illustrates the value

of post-prediction bias correction methods, and accounting for model uncertainty,

even when adversarial debiasing is used. The confidence intervals constructed us-

ing prediction-powered inference with the debiased predictions are 19% smaller

than the confidence intervals constructed using the Hansen et al. (2013) predic-
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tions, however, illustrating the value of our method in improving efficiency.

Ultimately we cannot make firm conclusions about the effect of artisanal gold-

mining, giving our small labeled sample. This exercise ultimately highlights the

importance of collecting better quality labels on forest cover data to improve the

precision of our estimates.

V. Conclusion

Advances in machine learning represent a tremendous opportunity for social

science research. Satellite data now makes it possible to measure land use changes

at unprecedented scale and resolution. Beyond satellite data, machine learning

techniques can be used to measure difficult to quantify concepts from text and

other unstructured data. As this field advances, however, researchers need to

be alert to the possibility of non-classical measurement error generated by these

techniques.

In this paper, we demonstrate how measurement error from machine learning

algorithms can bias coefficient estimates. We also demonstrate several general

and widely-applicable techniques to test for biases and correct these issues.

We demonstrate the usefulness of these techniques in several simulations and

empirical exercises studying forest cover in Africa. We find that across applica-

tions, standard machine learning models produce measurements which bias the

downstream estimation tasks, and that both the bias correction and adversar-

ial debiasing methods are able to recover the true parameters estimated with

ground-truth data.

In addition to the many practical applications of this technique, several theo-

retical questions present themselves for future work. In particular, the question

of how to correct standard errors in regressions using machine learned proxies

to account for model weight uncertainty appears to be very important. Progress
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on these questions will allow researchers to be better prepared to exploit im-

provements in the availability of data and machine learning algorithms for causal

research.
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Appendix A. Proof that adversarial debiasing penalizes the absolute

value of γ

Define P = X(X ′X)−1X ′ as the n x n symmetric and idempotent projection

matrix, and I as the n x n identity matrix. The Adversary’s loss function is:

La = (ν − Pν)′(ν − Pν)(A1)

= v′(I− P )′(I− P )ν = v′(I− P )ν

by the properties of the projection matrix. Take two different vectors of predic-

tion errors, ν and ν̃, such that |γ| = |(X ′X)−1X ′ν| > |γ̃| = |(X ′X)−1X ′ν̃|. The

difference in La for these two vectors is:

(A2) ν ′ν − ν ′Pν − [ν̃ ′ν̃ − ν̃ ′P ν̃].

Assume ν ′ν = ν̃ ′ν̃, i.e. the overall prediction error is the same. Then we want

that the primary model will choose ν̃, since |γ̃| is smaller. Since we are minimizing

Lp(·)− αLa(·), we want that La(ν) < La(ν̃) ⇐⇒ ν̃ ′P ν̃ < ν ′Pν. We know:

|(X ′X)−1X ′ν| > |(X ′X)−1X ′ν̃| ⇐⇒(A3)

ν ′X(X ′X)−1(X ′X)−1X ′ν > ν̃ ′X(X ′X)−1(X ′X)−1X ′ν̃

Since X is univariate, both sides are scalars. Multiply both sides by X ′X which

is a positive scalar, maintaining the inequality:

ν ′X(X ′X)−1(X ′X)(X ′X)−1X ′ν > ν̃ ′X(X ′X)−1(X ′X)(X ′X)−1X ′ν̃

ν ′P ′Pν > ν̃ ′P ′P ν̃

ν ′Pν > ν̃ ′P ν̃

Concluding the proof.
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Appendix B. Debiasing with Control Variables and Instruments

Adding Control Variables

Assume we want to estimate β1 in the regression

(B1) Ŷi = β1x1 + x2β2 + ei

where x1 is an n x 1 vector of the treatment variable, and x2 is an n x k matrix

of control variables. By the Frisch-Waugh-Lovell theorem, we can write β̂1 as:

(B2) β̂1 = (X̃ ′
1X̃1)

−1X̃ ′
1
˜̂
Y

where X̃1 are the residuals of the regression of X1 on X2, and
˜̂
Y are the residuals

of the regression of Ŷ on X2. β̂1 can thus be rewritten as follows:

β̂1 = (X̃ ′
1X̃1)

−1X̃ ′
1(I−X2(X

′
2X2)

−1X ′
2)(Y + ν)(B3)

= (X̃ ′
1X̃1)

−1X̃ ′
1(I−X2(X

′
2X2)

−1X ′
2)Y+

(X̃ ′
1X̃1)

−1X̃ ′
1(I−X2(X

′
2X2)

−1X ′
2)ν

= (X̃ ′
1X̃1)

−1X̃ ′
1Ỹ + (X̃ ′

1X̃1)
−1X̃ ′

1ν̃

where ν̃ are the residuals of the regression of ν on X2. The expectation of this

estimate is

(B4) E[β1] = β1 +
cov(X̃1, ν̃)

var(X̃1)
.

Intuitively this makes sense – if the residual variation in X1 is correlated with

the residual prediction error, after controlling for X2 in both cases, our estimate

will be biased. Thus following the same logic as above, we can make the adversary

a linear regression of ν̃ on X̃1.
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Instrumental Variables

A similar argument can be extended to the instrumental variables case with

controls. Following the two-stage least squares estimation procedure, we first use

covariates X2 and instruments Z to predict X1:

(B5) X̂IV
1 = C(C ′C)−1C ′X1

where C = [1, X2, Z]. Then, we regress the outcome against the predicted

values of X1 and the covariates X2 and take the estimated coefficient for X̂IV
1 in

this second stage regression as our estimate of the true β1. By the Frisch-Waugh-

Lovell theorem, we have

β̂1
2SLS

= (
˜̂
X1

′ ˜̂
X1)

−1 ˜̂
X1

′ ˜̂
Y(B6)

= (
˜̂
X1

′ ˜̂
X1)

−1 ˜̂
X1

′
Ỹ + (

˜̂
X1

′ ˜̂
X1)

−1 ˜̂
X1

′
ν̃

where
˜̂
X1 are the residuals from regressing X̂IV

1 on X2, Ỹ are the residuals from

regressing Y on X2, and ν̃ are the residuals from regressing ν on X2.

In the case of a single instrument Z, this estimator of β1 can be rewritten

more simply following the indirect least-squares procedure. For this approach, we

perform linear regressions for the models

(B7) Ŷi = γ0 + γ1X1i +X2iγ2 + wi;

(B8) X̂1i = α0 + α1Zi +X2iα2 + ui

This produces the following estimate of β1, which coincides with β̂1
2SLS

for this

special case:
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β̂ILS
1 =

γ̂1
α̂1

=
(Z̃ ′Z̃)−1Z̃ ′ ˜̂Y

(Z̃ ′Z̃)−1Z̃ ′X̃1

=
cov(Z̃,

˜̂
Y )

cov(Z̃, X̃1)
(B9)

=
cov(Z̃, Ỹ )

cov(Z̃, X̃1)
+

cov(Z̃, ν̃)

cov(Z̃, X̃1)

In the above expressions for β̂1
2SLS

and β̂ILS
1 , we see that the coefficient esti-

mates are the sum of the coefficient estimate that we would obtain from perform-

ing these procedures given Y without measurement error - which is consistent for

β1 given IV assumptions - and an additional bias term involving the measure-

ment error ν. To minimize this bias, we propose an adversary in the form of a

regression of ν̃ on Z̃ for the single instrument case, or ν̃ on
˜̂
X1 more generally.
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