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How we evaluate policy

1 / 47



This is an incredible accomplishment!

- 1950: PC Mahalanobis launches first large
scale representative surveys in India

- late 1950s: China abandons comprehensive
data collection
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Is it possible to do better?

Household Surveys Satellite Data
Spatial Resolution Selected villages or coarser

geographies
Entire world at 10m or less

Temporal Resolution Typically annual or greater Every 2 weeks or less

Political vulnerability Can be distorted or sup-
pressed

Available publicly within 24
hours

Variables Measured Direct measures of things
we care about (income, con-
sumption, etc...)

Light intensity at various
wavelengths

Biases and uncertainty Well understood, often quan-
tifiable

???
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What is Satellite Data?
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Remote Sensing and Policy Evaluation

Typical approach is to train a machine learning model (or use off the shelf dataset)

https://www.globalforestwatch.org/map/global/

- Hand labeling all observations is
expensive and time-consuming

- Machine learning methods + satellite
data Ñ data sets of outcome
variables with minimal labeling

- Global Forest Watch (Hansen et al.,
2013). Global Fishing Watch. Air
Pollution (van Donkelaar et al., 2019).
Wealth Indices (Yeh et al., 2020).
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Applications
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Beware Prediction Errors

Well documented biases can pose
problems for causal inference

- Air Pollution (Fowlie, Rubin and
Walker, 2019)

- Forest Cover (Tropek et al., 2014)
- Wealth (Ratledge et al., 2021)
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Remotely sensed variables have measurement error

- Remotely sensed data products will likely have minimum global prediction error, but
may make systematic errors within subsets of the training data feature space.

- These might include:
- Any geographic area
- Treatment status
- The range of the ground-truth measure

- Especially likely for ‘underrepresented’ areas of feature space
- ‘A Fairness Accuracy Frontier’ (Liang, Lu and Mu, 2023)
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Outline

Relevant Literature:
- Correcting for measurement error in remote sensing (Alix-Garćıa and Millimet, 2023; Torchiana et al.,

2023; Proctor, Carleton and Sum, 2023; Angelopoulos et al., 2023; Kluger et al., 2025).
- Machine learning, adversarial debiasing, ‘Algorithmic Justice’, active learning (Zhang, Lemoine and

Mitchell, 2018; Chernozhukov et al., 2020; Liang, Lu and Mu, 2023; Zrnic and Candès, 2024)
Agenda for Today:

- Preliminiaries: Problem setup, existing solutions
- Paper 1: Remote Control: Debiasing Remote Sensing Predictions for Causal Inference (with Luke Sanford,

Megan Ayers, and Eliana Stone)
- ML algorithm to ‘debias’ measurement error using labelled data

- Paper 2: Dumps (with Anna Papp)
- Optimal selection of labelled points
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A Simple Setup:

We want to estimate:
Yi “ α ` τXi ` ei

pYi “ Yi ` νi

pτ “ τ `
covpX ,eq

varpX q
`

covpX , νq

varpX q
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Prediction error can bias causal inference–RCT

- X : Unconditional Cash Transfer, Y : Forest cover
- Ŷ : RS measure of forest cover, ν: measurement error
- Want to estimate effect, τ, of X on Y . Are able to estimate effect of X on pY , τ̃.

- Problem: ψ is irrigated cropland, more often misclassified as tree cover.

X Y pY

Ψ

ν
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Idea for a simple solution:

pτ “ τ `
covpX ,eq

varpX q
`

covpX , νq

varpX q

Make sure covpX , νq “ 0!
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Prediction Powered Inference (Angelopoulos et al., 2023)

Consider a linear regression of treatment status on prediction errors:
- Note we estimate this regression in the labelled observations j P S

νj “ γXj ` ϵj
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Prediction Powered Inference (Angelopoulos et al., 2023)

Consider a linear regression of treatment status on prediction errors:
- Note we estimate this regression in the labelled observations j P S

νj “ γXj ` ϵj

pγ “
covpX , νq

varpX q

This is the bias term in our estimate of τ!

13 / 47



A bias test

Is γ “
covpX ,νq

varpXq
“ 0?

- Standard confidence intervals of pγ tell us whether we can rule out large biases
- Using straightforward power analysis techniques, we can calculate the minimum

detectable bias
- How many points would you have to verify in order to be confident in your treatment

effect estimates?
- Can use high resolution imagery, hand labelling
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Predict-then-Debias

pτ is estimated using predictions, pγ is estimated in labelled set:

pτppi “ pτ ´ pγ (1)

Consistent if pγ Ñp Epγq.
- Satisfied if labelled set is representative
- Works for multivariate X
- Optimal weights for ground truth/predicted data (Kluger et al., 2025).
- Variance has 2 components, pτ and pγ

- Both are constrained by accuracy of original predictions
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Consistent if pγ Ñp Epγq.
- Satisfied if labelled set is representative
- Works for multivariate X
- Optimal weights for ground truth/predicted data (Kluger et al., 2025).
- Variance has 2 components, pτ and pγ

- Both are constrained by accuracy of original predictions

How can we create debiased predictions that are as efficient as possible?
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Introduction to adversarial debiasing

modeldata

predicts outcome
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Introduction to adversarial debiasing

model adversarydata

predicts outcome predicts protected characteristic

prediction errors

Used in computer science for making sure e.g. job/loan application ratings do not
discriminate on the basis of race or gender (Zhang et al. 2018)
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Introduction to adversarial debiasing

RS model adversarydata

predicts tree cover predicts treatment variable

prediction errors

Used in computer science for making sure e.g. job/loan application ratings do not
discriminate on the basis of race or gender (Zhang et al. 2018)
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Adversarial Debiasing Formally

Loss function for a standard model: choose model weights (ω˚) such that

ω˚ “ argmin
ω

Lpp pY pωq,Y , kq

- Lp is a loss function (e.g. mean squared error)
- pY are predictions of true outcomes Y , k are input features

- La is adversary’s loss function
- pX are predictions of treatment variables X
- µ are adversary’s model weights
- α is a tuning parameter: weight on the adversary’s loss function
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Loss function for an adversarial model: choose model weights (ω˚) such that
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subject to: µ P argmin LapX̂ pµq,X ,Y , Ŷ pωqq
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Unbiased Predictions

Consider an adversary that is our linear regression of treatment status on prediction errors:

νi “ γXi ` ϵi

pγ “
covpX , νq

varpX q

Intuitively, for a given accuracy, adversary MSE maximized when pγ “ 0
- Can also penalize bias directly (e.g. |γ| or γ2
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Our application space
- Bastin et al. (2017) 23,000 hand-labeled points on dryland forest in W. Africa

- motivated by Hansen et al. (2013) under-estimate of forest in dryland biomes
- Landsat 7 Surface Reflectance (7 bands)
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Experiments: Can we recover τ using ML predictions of Y ?

- Train baseline ML model (simple 3-layer neural net) using satellite data and 2/3 of
labeled points

- cross-fit the model to get OOS predictions for each labeled point
- Train adversarial model in the same way
- Use ground truth, baseline model measurements, and adversarial model

measurements to estimate τ
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Application 1: Simulated Data

- ψ „ Poisson (think e.g. slope)
- ppX q decreasing in ψ (think e.g. infrastructure)
- Y : % Forest cover - randomly draw Bastin points and associated satellite data

- Treatment effect τ “ 0 if using true labels

- One catch: if ψ ą 0, we make the points look ‘greener’

- Since high ψ points are less common, standard ML model learns that green usually
means trees

- Debiased model notices these errors are correlated with X , does worse on low ψ
points, better on high ψ points

- This is despite not knowing ψ!
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Application 1: Assessing bias

- Adversarial models correctly estimate
τ “ 0

- Coefficient distributions from 100
bootstrapped iterations, models trained
on 10,000 observations
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What if we progressively label more observations?
How well can we estimate bias if we have n labelled points:
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What if we progressively label more observations?
We can also bootstrap SEs for the bias statistic to estimate power:
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What if we progressively label more observations?
Adversarial models do well with sufficient training data:
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Tuning adversarial weight α: decreased bias, precision loss
Logistic Regression:
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Tuning adversarial weight α: decreased bias, precision loss
Deep Neural Net:
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Takeaways

- Caution when using proxies for outcome variables
- Issue is not unique to remote sensing! Many uses of machine-learned outcomes as

variables in other models (eg. text-based outcomes)
- If you are training a remote sensing model for a causal inference task you can:

- Check to see if your estimates are biased by measurement error
- See how many points you would need to label to detect bias of a certain size
- Train a model that produces measurements that are suitable for your task

- Conduct measurement with the application in mind
- A simple unbiased model can be better than a more powerful more accurate model

- Next: An empirical research question where remote sensing data would be useful

- Can we do better than randomly selecting which points to label?
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Dumps

- Waste management often one of the largest
line-items in low-income city municipal
budgets: 20% of total expenditures Hoornweg
and Bhada-Tata (2012)

- Estimated 90% of waste in low-income
countries is disposed in unregulated landfills or
burned

- Solid waste generation expected to increase
73% by 2050
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Motivation: Trade

- Approximately 50% of plastic waste collected for recycling is traded internationally
Kellenberg (2015)

- The US exported „2 million tons of plastic scrap to 89 trade partners in 2016. About 8x
US auto exports by weight!

- What are the welfare implications of the global trade in waste?

“the economic logic behind dumping a load of toxic waste in the lowest wage country is
impeccable” – Larry Summers, 1991

- Waste trade is heavily cross-subsidized

- Poor institutions as a source of comparative advantage? (Chichilnisky 1994)
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The China Waste Import Ban

- China’s National Sword Policy (also known as China’s waste ban) was announced in
mid-2017 and enacted in January 2018

- Prior to the ban, China handled around half of the world’s traded recycling waste
(around 70% of US exports and 95% of EU exports)

- After the ban, shippers diverted a significant fraction of this waste to countries across
Southeast Asia and the rest of the world
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Motivation
- This led to a huge increase in imported plastic waste in some countries

- Current discussions to limit trade in plastic waste under the Basel Convention
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This Paper

- A method combining crowd-sourced data, machine learning, and econometric
methods to create a globally-representative time-series of dumps for 2011-2023

- Could be applied to other hard-to-study land uses

- Preliminary Findings:
- Global ‘dump’ area increased 4x after the China Waste Ban
- Increase is widespread - including in countries that saw imports fall
- 1-2% of dump pixels are near a fire

- Spikes around time of waste ban, but goes back down

- Future work to look at health/labor market outcomes
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Existing Research on Dumps

Meijer et al. (2021). More than
1000 rivers account for 80% of
global riverine plastic emissions into
the Ocean. Science Advances.

- Emissions = Population x
MPW/capita x % Mismanaged
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Mismanaged Waste

(Kaza et al., 2018). Solid waste data
should be considered with a degree
of caution due to...

- Undefined words or phrases
- Inconsistent or omitted units
- Estimates made without basis
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The Role of Trade

Law et al (2020). The United States’ contribution of plastic waste to land and ocean.
Science Advances

- To our knowledge, no quantitative estimates exist of the proportion of material
exported for recycling that is ultimately discarded as waste or of the methods of
disposal

- we applied a credible range estimate of between 25 and 75% of plastic waste
discarded during the processing of plastic and paper scrap that was inadequately
managed in receiving countries that have greater than 20% inadequately managed
waste.

- By our upper-bound estimate, in 2016, the United States was the third largest
contributor of mismanaged plastic waste to the coastal environment globally
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Model-Assisted Stratified Sampling

- Our goal is to create a time series of open-air waste sites by country

Crowdsourced Data Satellite Imagery

Machine Learning Model

Probability of Open-Air Waste Sites

Stratified Sampling

Area of Open-Air Waste Sites
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Training Data Collection

Crowdsourced training site collection:
- Partnership with NGOs, researchers, and activists; set up Atlas of Plastic Waste portal

www.ban.org
- 270 unique open-air waste sites across 24 countries

Other Data Sources: D-waste, Earthrise, Greenpeace:
- « 2,000 additional sites from 80+ countries
- 1,300 more sites from initial experiments with model
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Full Training Data
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Satellite Data
- Optical (Sentinel-2) and radar (Sentinel-1)
- 10m resolution, 11 bands + derived indices, 2 week overhead time

High Resolution Imagery Sentinel 2 False Color
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Machine Learning Model
- We train an XGBoost model on 80% of the clusters, evaluate accuracy on remaining

20%
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Machine Learning Model: Accuracy

Durres, Albania 2018
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Machine Learning Model: Accuracy

Durres, Albania 2020
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Machine Learning Model: Accuracy

Durres, Albania 2021
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Machine Learning Model: Bias

- Accuracy Measures: Hold-out clusters
- Balanced Accuracy: 90%
- Precision: 92%
- Recall: 85%

- Hopelessly biased
- Training data not representative
- Image quality changes over time and between areas
- Massively unbalanced classes exacerbate issues

- If dumps make up 0.1% of landcover, and my accuracy varies by 0.05% between
periods/countries, I could find a 50% increase in dumps when no change has occurred.

- Yet still useful...
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Model Assisted Active Sampling

Standard Horvitz-Thompson unequal probability estimator of bias, with weights wi “ 1{πi ,
where πi is inclusion probability:

pµmaas “
1
N

ÿ

iPN

pi `
1
N

ÿ

iPN

wisi νi (2)

How can we choose which points to sample? Select inclusion probabilites πi to solve:

min
πi

Varppµmaasq (3)

such that
ÿ

i

πi “ S
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Model Assisted Active Sampling

First term is constant since we observe whole population. With iid assumption, variance of
the second term is:

Varppµmaasq “
1

N2

ÿ

iPN

Varpwisippi ´ Diqq (4)

“
1

N2

ÿ

iPN

pip1 ´ piq

πi

Taking FOC and solving for π gives closed for solution for optimal sampling inclusion
probabilities:

πi “ S

a

pip1 ´ piq
ř

j

a

pip1 ´ piq
(5)
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Model Assisted Active Sampling

πi “ S

a

pip1 ´ piq
ř

j

a

pip1 ´ piq

This expression is not new (Neyman (1934))
- What is new is using ML model to get predictions of pi

- If model is biased, it doesn’t affect consistency, just efficiency
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Model Assisted Active Sampling

Plug inclusion probabilities back into formula for the variance:

Varppµmaasq “
1

N2S

«

ÿ

iPN

a

pip1 ´ piq

ff2

(6)

Compare to uniform sampling:

Varppµppiq “
1

NS

ÿ

iPN

pip1 ´ piq

Varppµmaasq

Varppµppiq
“

1
1 ` CV 2

σ

ď 1
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Optimal Sampling: Example Tile
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Optimal Sampling: Example Tile

Theoretical efficiency gains:
- For the same sample size, variance decreases by 99.88% relative to uniform sampling
- Might not be realistic:

- Some scenes are more homogeneous
- pi probably (definitely) not perfectly calibrated

- still, potential gains are large
- Apply a similar approach to estimate changes. Need to estimate pchg based on vector

of probabilities over time.
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Time Trend in Dumps
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Thank you!

matthew.gordon@psemail.eu
https://sites.google.com/view/mdgordon/

Thanks to Anna Papp, Luke Sanford, Megan Ayers, Eliana Stone, Marion Chadal, and STEG, the IGC,
the Minderoo Foundation, Earthrise, and the Basel Action Network for supporting the work.
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